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Chapter 1

Introduction

This is meant to be, as the title suggests, a primer into abstract algebra. It is not meant to be
a traditional text, so I will expound a little on the goals of the text and the style it will adopt.

This primer is not particularly concerned with thoroughness. For instance, we do not
mention that the simplicity of 𝑁  and 𝐺

𝑁  implies the simplicity of 𝐺, besides as a throwaway
comment in module theory. Nor do we prove the Jordan-Holder theorem, though a
thorough writeup is linked near the theorem. Furthermore, the proofs are not always
completely rigorous. Especially when it comes to routine inductions, we will be a little lazy
and neglect to perform the actual induction.

The primary goal is to develop a general intuition for your first genuine study of algebra.
This is not a text meant to be studied at depth. It is meant to be skimmed for an overview of
introductory algebra.

The style is highly conversational, in stark contrast with other texts (including, to some
extent, my own). It is more akin to my blogging style. The aim is not for you to take your
time to develop a deep understanding of algebra. Rather, it is so you can quickly take a first
pass of algebra and develop a base of intuition.¹ A highly conversational style, I think, will
work best here.

The structure of the content loosely models the Spring 2024 rendition of graduate algebra
(21-610) taught by Professor James Cummings at Carnegie Mellon University. However, I
have taken some liberties. I have added introductory content in groups and rings, and I
make fewer assumptions on the properties a ring satisfies (at least initially). Furthermore
the presentation of module theory is significantly different.

1.1 Prerequisites

I could claim that this text has no prerequisites besides a basic understanding of middle
school math. This would technically be true, but there are some things it would be helpful to
know to have a good intuition about algebra. So I will explicitly assume you know
everything that I am about to list, although you do not necessarily have to understand
everything to benefit.

First and foremost, you should roughly know what a proof looks like. This is not in spite of
our relaxed standards for rigor, it is because of it. If you understand how to read and write a
proof, you will have a good feel for how our intuitions are converted into proofs.

¹Of course, “quickly” here is only relative to more extensive texts. Learning all of this content will likely
require a few months of active study.
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Conversely, if you do not, then you are just reading a list of facts with loosey-goosey
justifications.

You need to have a good intuitive understanding of what a set is and how injective/
surjective functions behave. You do not need to have any formal knowledge of set theory
(no one is expecting you to recite the axioms of ZFC in your sleep), or know that a function
happens to be a subset of the Cartesian product of the domain and codomain.² But working
with sets should feel natural to you.

You should know some rudimentary number theory. Know what it means to take something
“modulo 𝑝”, and for groups, know Fermat’s Little Theorem/Euler’s Totient Function. (It is
very helpful if you also know the proofs!) For rings, you will also want to understand the
Euclidean Algorithm and know the Fundamental Theorem of Arithmetic (you do not need
to know the proof).

You will also want a good understanding of combinatorial arguments. Even if we do not use
some of them directly, if you do not know how many subsets {1, 2, …, 𝑛} has, it is unlikely
that the many combinatorial arguments in this text will make sense to you.

Some background in proof-based linear algebra would be helpful. You do not need to know
what an eigenvector is, but know all the background that comes before. Bases, linear
independence, Rank-Nullity, etc. I will assume you are deeply familiar with all of this.
Maybe also know what a matrix is, though this is not at all necessary.

1.2 Errata

A list of errata for past versions of the book lives at https://dennisc.net/writing/blog/
algebra-primer.

I wrote this book over the course of a few months. As such, it is highly probable that
significant typos or errors exist. If that is the case please let me know, even if they are trivial
typos. Thank you.

²Only in the proof of Theorem 4.42 do I expect you to know some basic undergraduate set theory. Even
then it is not very crucial.
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Chapter 2

Groups

The first algebraic structure we study is the group. Historically, this is backwards: the seeds
of group theory were developed by Galois in order to answer questions about fields. Groups
have many connections and applications outside of Galois Theory, so this is fine. But keep
this in the back of your head, especially when we explicitly study Galois Theory. Some of
the seemingly random definitions we create now (e.g. solvability) are directly related to it.

2.1 The Basics

Take any positive 𝑛 and consider the residues modulo 𝑛. We denote this set of residues as
ℤ/𝑛ℤ. Notice the following facts:

• there are 𝑛 distinct residues,
• there is an element 0 such that 0 + 𝑔 ≡ 𝑔 (mod 𝑛) for any 𝑔 ∈ ℤ/𝑛ℤ,
• for every element 𝑔, there is an element −𝑔 such that (−𝑔) + 𝑔 ≡ 0 (mod 𝑛) for any 𝑔.

There are two additional things to note.

•
First note that 

𝑔 + … + 𝑔⏟⏟⏟⏟⏟
𝑛 copies

≡ 0 (mod 𝑛)
 for all 𝑔 ∈ ℤ/𝑛ℤ.

• Similarly note that for all 𝑔 ∈ ℤ/𝑛ℤ, 𝑛 is divisible by the smallest positive 𝑘 where
𝑔 + … + 𝑔⏟⏟⏟⏟⏟

𝑘 copies

≡ 0 (mod 𝑛)
. For example, if 𝑛 = 6, the smallest 𝑘 for 𝑔 = 2 would be 3 as

2 + 2 + 2 ≡ 0 (mod 6). And 3 ∣ 6.

Very explicitly, consider (ℤ/𝑛ℤ, +). And note that ℤ/𝑛ℤ is a set, whereas + is a function of
the form + : ℤ/𝑛ℤ × ℤ/𝑛ℤ → ℤ/𝑛ℤ. The pair (ℤ/𝑛ℤ, +) is an example of a group.

Definition 2.1 (Group).  A group is a pair (𝐺, ⋅) where ⋅ is an associative binary
function of the form ⋅ : 𝐺 × 𝐺 → 𝐺 that satisfies the following properties:

• There is an identity element id such that for all 𝑔 ∈ 𝐺, id ⋅ 𝑔 = 𝑔.
• For every 𝑔 ∈ 𝐺, there is some element 𝑔−1 ∈ 𝐺 such that 𝑔−1 ⋅ 𝑔 = id.¹

Some basic consequences:

• The inverse is two-sided: if 𝑔−1 ⋅ 𝑔 = id then 𝑔 ⋅ 𝑔−1 = id too. Put another way, every
element commutes with its inverse to give identity.

¹As our axioms do not specify uniqueness of id, strictly we should say that (𝑔−1 ⋅ 𝑔) ⋅ ℎ = ℎ for all ℎ ∈ 𝐺,
i.e. 𝑔−1 ⋅ 𝑔 “behaves like an identity element”. But we choose to be a little imprecise for purposes of clarity
here, especially because the identity element does turn out to be unique.
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• The identity is two-sided: 𝑔 ⋅ id = 𝑔 too. Put another way, multiplying by the identity
element does nothing, no matter where you put it.

• The inverse is unique.
• id−1 = id.

The proofs are fairly straightforward.

Definition 2.2 (Auxillary Notation for Groups).

• We will often write 𝑔ℎ instead of 𝑔 ⋅ ℎ. Also, when ⋅ is clear or does not need to be
explicitly written, we will refer to the group (𝐺, ⋅) simply as 𝐺.

• We can repeatedly apply the group operation with many copies of an element: we

denote 
𝑔 ⋅ … ⋅ 𝑔⏟
𝑘 copies  as 𝑔𝑘.

• We write |𝐺| to denote the number of elements inside the group 𝐺 and refer to it
as the order of 𝐺. For example, |ℤ/𝑛ℤ| = 𝑛 since ℤ/𝑛ℤ has 𝑛 elements.

When the order is finite we call 𝐺 a “finite group” and write |𝐺| < ∞. And when
it is infinite we call 𝐺 an “infinite group” and write |𝐺| = ∞.

• Similarly we write |𝑔| to denote the smallest positive integer such that 𝑔|𝑔| = id.
We call this the order of 𝑔. We may classify the order of an element as finite or
infinite, just as with a group.

Implicitly, groups are “closed” under their binary operation. This is by definition, but it is
important to explicitly keep this in mind so you understand {−1, 0, 1} ⊂ ℤ is not a group
under addition.

Here are some examples of groups:

• (ℤ/𝑛ℤ, +), of course.
• (ℤ, +)
• (ℚ, +)
• (ℝ, +)
• (ℂ, +)
• 𝐺 × 𝐻 , i.e. the Cartesian product of groups 𝐺 and 𝐻  where the group operation is

defined componentwise. (So for example, ℤ × ℚ is a group.)

All the groups we have listed so far are abelian (i.e. every pair of elements commute). By the
way, it is a fact (not one we will explore in any depth) that every finite abelian group is
equivalent² to the Cartesian product of groups of the form ℤ/𝑝𝑘ℤ (where 𝑝 is prime). For
example, ℤ/12ℤ ≅ ℤ/4ℤ × ℤ/3ℤ.

2.1.1 Non-commutative Groups

²By “equivalent” we mean isomorphic. We will explore isomorphisms shortly.
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There is one big difference between a general group and ℤ/𝑛ℤ: the group ℤ/𝑛ℤ is
commutative whereas a general group is not. There are lots of non-commutative groups,
here are two examples:

• The group of 𝑛 × 𝑛 matrices with non-zero determinant, which we refer to as 𝐺𝐿𝑛.
• The dihedral group 𝐷2𝑛 of an 𝑛-gon, i.e. the group formed by considering the rotations

the interchange vertices and the reflections about the 2𝑛 lines of symmetry. The
dihedral group is a good source of intuition and I recommend you read about it, e.g. on
https://en.wikipedia.org/wiki/Dihedral_group

• Most importantly, the group of bijective functions 𝑓 : 𝑋 → 𝑋, where the group
operation is function composition. We call bijections from a function to itself
permutations³ and it is a fact that every group is identical to some permutation group.
(We will soon make this idea much more precise.)

We denote this permutation group as 𝑆𝑋 .

2.1.2 Subgroups and Cosets

Suppose |𝐺| = 𝑛. Analogously to ℤ/𝑛ℤ, it is a fact that for general groups 𝐺, 𝑔𝑛 = id and 𝑛
is divisible by the smallest positive 𝑘 such that 𝑔𝑘 = id. We develop the notion of a
subgroup and use it to prove these facts, but the theory of subgroups is much richer than
these basic facts.

Definition 2.3 (Subgroup).  A subgroup 𝐻  of 𝐺 is any subset of 𝐺 closed under the
group operation of 𝐺. We write 𝐻 ≤ 𝐺.

The subgroup 𝐻  is proper if it is not equal to 𝐺. In this case we write 𝐻 < 𝐺.

As the name suggests, 𝐻  (with the group operation of 𝐺) is a group in its own right. (This
implies id ∈ 𝐻 .) For example, a subgroup of ℤ/6ℤ is the set of even residues.

Exercise 2.4.  If 𝐻 , 𝐾 ≤ 𝐺, show that 𝐻 ∩ 𝐾 ≤ 𝐺.

Exercise 2.5 (The Center of a Group).  The center of 𝐺, which we denote as 𝑍(𝐺),
is the set of all 𝑔 that commute with all ℎ ∈ 𝐺. Formally,
𝑍(𝐺) = {𝑔 : 𝑔 ⋅ ℎ = ℎ ⋅ 𝑔 for all ℎ ∈ 𝐻}. It turns out 𝑍(𝐺) ≤ 𝐺. Verify this.

Exercise 2.6.  Show that for any proper subgroup 𝐻  of ℚ, there exists some
𝐻 < 𝐾 < ℚ. (This shows that ℚ has no maximal subgroups.)

Definition 2.7 (Coset).  Given 𝐻 ≤ 𝐺, we say 𝑔𝐻 = {𝑔ℎ : ℎ ∈ 𝐻} is a left coset of
𝐻 . (Usually we will just refer to it as a coset.)

³Here is how this term squares with your prior intuition of a permutation of a list like (1, 2, 3). Instead of
considering (2, 3, 1) as “a different ordering”, consider it as “the function 𝜋 where 𝜋(1) = 2, 𝜋(2) = 3, and
𝜋(3) = 1”.
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Here is an important theme that will persist for a while: we may consider 𝑔 ∈ 𝐺 as an
element, but we may also associate it with a unique permutation 𝜋𝑔 that maps 𝜋𝑔 : ℎ ↦ 𝑔ℎ.⁴

Furthermore, we may consider 𝑔𝐻  as the image of 𝜋𝑔 applied to 𝐻 . And because we just
established 𝜋𝑔 is a permutation (i.e. a bijection), the size of every 𝐻-coset is the same.
After noting that any two distinct 𝐻-cosets are disjoint, one may easily derive the
following.

Theorem 2.8 (Lagrange's Theorem).  If |𝐺| < ∞ and 𝐻 ≤ 𝐺, then
|𝐻|[𝐺 : 𝐻] = |𝐺|, where [𝐺 : 𝐻] denotes the number of 𝐻-cosets in 𝐺.

This is because we may partition 𝐺 into [𝐺 : 𝐻] equally-sized 𝐻-cosets. An important
consequence is that |𝐻| divides |𝐺|.

Exercise 2.9.  Show that distinct 𝐻-cosets are indeed disjoint. (Hint: Suppose two 𝐻-
cosets are not disjoint, that is, there is some 𝑔1 ∈ 𝑔2𝐻 . This means 𝑔1 = 𝑔2ℎ for some
ℎ ∈ 𝐻 , now show every 𝑔 ∈ 𝑔1𝐻  is in 𝑔2𝐻  to show that 𝑔1𝐻 ≤ 𝑔2𝐻 .)

By the way, distinct cosets being disjoint means

𝑔1 = 𝑔2ℎ for some ℎ ∈ 𝐻 ⟺ 𝑔1𝐻 = 𝑔2𝐻.

Now here’s the kicker. Given any 𝑔 ∈ 𝐺, the set of elements of the form 𝑔𝑎 forms a
subgroup of 𝐺. The number of elements in this subgroup is precisely the smallest 𝑘 such
that 𝑔𝑘 = id. So this 𝑘 better divide 𝑛, and as an easy consequence, 𝑔𝑛 = id.

Exercise 2.10.  Connect Lagrange’s Theorem with our favorite example ℤ/𝑛ℤ.

Exercise 2.11.  For any 𝑔1, 𝑔2 ∈ 𝐺, show that

𝑔1𝐻 = 𝑔2𝐻 ⟺ 𝑔−1
1 𝑔2 ∈ 𝐻.

2.1.3 Indices on Groups of Infinite Order

We denote the number of distinct 𝐻-cosets as [𝐺 : 𝐻]. This is called the index of 𝐻  in 𝐺.

When defining the index, there is no need for 𝐺 or 𝐻  to be finite. Obviously when 𝐺 and 𝐻
are finite, [𝐺 : 𝐻] = |𝐺|

|𝐻| . But it is possible for |𝐺| and |𝐻| to both be infinite and for there to
be a finite number of 𝐻-cosets.

Example 2.12.  Consider 𝐺 = ℤ and 𝐻 = 𝑛ℤ. Both 𝐺 and 𝐻  are infinite, and the
expression |𝐺|

|𝐻|  is not well-defined, but [𝐺 : 𝐻] is well-defined to be 𝑛. Infinite
subgroups of infinite groups can have finite index.

Example 2.13.  Infinite subgroups of infinite groups can have infinite index too.
Consider ℚ ≤ ℝ. If there were a finite number of ℚ-cosets then we could enumerate ℝ,
and since we cannot enumerate ℝ, we know there are an infinite number of cosets.
(Uncountably infinite, in fact.)

⁴This notation is convenient shorthand to say that 𝜋𝑔 is the function where 𝜋𝑔(ℎ) = 𝑔ℎ.
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What’s the takeaway? An index is just the cardinality of a set (the set of 𝐻-cosets when
𝐻 ≤ 𝐺). And any cardinality can be achieved. So do not make any hasty assumptions that
𝐺, 𝐻 , or [𝐺 : 𝐻] are finite. We often will not need them.

2.2 Homomorphisms and Isomorphisms

Very loosely, a homomorphism 𝜑 is a map between groups 𝜑 : 𝐺 → 𝐻  such that the group
structures of 𝐺 and 𝐻  are respected by 𝜑.

Definition 2.14 (Homomorphism).  A homomorphism 𝜑 : 𝐺 → 𝐻  (where 𝐺 and
𝐻  are groups) is a function where

𝜑(𝑔1𝑔2) = 𝜑(𝑔1)𝜑(𝑔2)

for all 𝑔1, 𝑔2 ∈ 𝐺.

We say a homomorphism is an isomorphism if it is a bijection. We say an
isomorphism is an automorphism if 𝜑 : 𝐺 → 𝐺.

The motto is as follows:

In a homomorphism, it doesn’t matter if you apply the group operation or 𝜑 first.

Note that 𝑔1𝑔2 is a multiplication between two elements in 𝐺 whereas 𝜑(𝑔1)𝜑(𝑔2) is a
multiplication between two elements in 𝐻 .

Exercise 2.15.  Show that 𝜑(𝑔𝑘) = 𝜑(𝑔)𝑘 for all integers 𝑘.

Exercise 2.16.  We say that 𝐺 and 𝐻  are isomorphic if there exists some
isomorphism between 𝐺 and 𝐻 , and we write it as 𝐺 ≅ 𝐻 .

Show that ≅ is an equivalence relation, that is, ≅ is

• reflexive
• symmetric
• transitive.

Definition 2.17 (Kernel and Image).  Given a homomorphism 𝜑 : 𝐺 → 𝐻 ,
ker 𝜑 = {𝑔 ∈ 𝐺 : 𝜑(𝑔) = id} and im 𝜑 = {𝜑(𝑔) : 𝑔 ∈ 𝐺}.

Note ker 𝜑 ≤ 𝐺 and im 𝜑 ≤ 𝐻 .⁵

Exercise 2.18.  Consider the homomorphism 𝜑 : ℤ → ℤ/8ℤ defined as follows:
𝜑 : 𝑥 ↦ 2𝑥. What are ker 𝜑 and im 𝜑? Keep this exercise in mind: we will come back
to this homomorphism.

⁵We use ≤ specifically to denote subgroups!

10 Section 2.2 Homomorphisms and Isomorphisms



Here is the setting for the rest of this section. We will consider a homomorphism
𝜑 : 𝐺 → 𝐻  and study ker 𝜑 and its cosets.

Theorem 2.19.  For all 𝑔1, 𝑔2 ∈ 𝐺,

𝜑(𝑔1) = 𝜑(𝑔2) ⟺ 𝑔1 ker 𝜑 = 𝑔2 ker 𝜑.

Proof of Theorem 2.19.  Note that

𝜑(𝑔1) = 𝜑(𝑔2) ⟺ 𝜑(𝑔1𝑔−1
2 ) = id

⟺ 𝑔1𝑔−1
2 ∈ ker 𝜑

⟺ 𝑔1 ker 𝜑 = 𝑔2 ker 𝜑.

□

This implies the ker 𝜑-cosets form a group with the following operation:

𝑔1 ker 𝜑 ⋅ 𝑔2 ker 𝜑 = (𝑔1𝑔2) ker 𝜑.

We will call this group a quotient group. When we try to form a quotient group with some
arbitrary 𝑁 ≤ 𝐺, there’s one main sticking point: we need representation invariance, i.e.
we need

𝑔1𝑁 = 𝑔3𝑁 and 𝑔2𝑁 = 𝑔4𝑁 ⟹ (𝑔1𝑔2)𝑁 = (𝑔3𝑔4)𝑁

for all 𝑔1, 𝑔2, 𝑔3, 𝑔4 ∈ 𝐺. This is true precisely when 𝑁 = ker 𝜑 for some homomorphism 𝜑
(the algebraic manipulations to show this are nearly identical to the ones that show
Theorem 2.19).

Call this group 𝐺
ker 𝜑  (and for any 𝑁 ≤ 𝐺 where we can perform a similar construction,

define 𝐺
𝑁  the same way). We may define a homomorphism

𝜑∗ : 𝐺
ker 𝜑

→ im 𝜑

where 𝜑∗(𝑔 ker 𝜑) = 𝜑(𝑔).

Exercise 2.20.  Check that 𝜑∗ satisfies representation invariance. (Part of the
exercise is figuring out what precisely representation invariance means here.)

It turns out that 𝜑∗ is an isomorphism. It is injective as

𝜑∗(𝑔1 ker 𝜑) = 𝜑∗(𝑔2 ker 𝜑) ⟺ 𝜑(𝑔1) = 𝜑(𝑔2) ⟺ 𝑔1 ker 𝜑 = 𝑔2 ker 𝜑

and it is surjective by definition (that is why we chose the codomain to be im 𝜑). So
𝐺

ker 𝜑 ≅ im 𝜑. By the way, this is the First Isomorphism Theorem.

Exercise 2.21.  Explicitly verify the First Isomorphism Theorem holds for
Exercise 2.18.
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We’re not done though: we still want to find which 𝑁 ≤ 𝐺 admit a quotient group. It turns
out only the subgroups that are the kernel of some homomorphism do, because
representation invariance is equivalent to being a kernel.

We’ve already shown that kernels are representation invariant. And if 𝑁  is representation
invariant, then 𝜑 : 𝐺 → 𝐺

𝑁  where 𝜑 : 𝑔 ↦ 𝑔𝑁  is a homomorphism with kernel 𝑁 .⁶ So
indeed these two conditions are equivalent.

There is another equivalent condition. It turns out that representation invariance holds
precisely when 𝑔𝑁𝑔−1 ≤ 𝑁  for all 𝑔 ∈ 𝐺. Put another way, for all 𝑔 ∈ 𝐺, 𝑛 ∈ 𝑁 , we must
have 𝑔𝑛𝑔−1 ∈ 𝑁 :

• Representation invariance implies 𝑁 = ker 𝜑 for some homomorphism 𝜑, which means
𝜑(𝑔𝑛𝑔−1) = 𝜑(𝑔)𝜑(𝑛)𝜑(𝑔)−1 = 𝜑(𝑔)𝜑(𝑔)−1 = id, ie. 𝑔𝑛𝑔−1 ∈ ker 𝜑 = 𝑁 .

• Suppose 𝑔𝑁𝑔−1 ≤ 𝑁  and 𝑔1𝑁 = 𝑔3𝑁 , 𝑔2𝑁 = 𝑔4𝑁 . Then we’d like to show
𝑔1𝑔2𝑁 = 𝑔3𝑔4𝑁 . Note

𝑔1𝑔2(𝑔3𝑔4)
−1 = 𝑔1𝑔2𝑔−1

4 𝑔−1
3

= (𝑔1𝑔−1
3 )(𝑔3𝑔2𝑔−1

4 𝑔−1
3 )

By Exercise 2.11, 𝑔1𝑔−1
3 ∈ 𝑁 , and as 𝑔𝑁𝑔−1 ≤ 𝑁 , (𝑔2𝑔−1

4 )𝑔3 ∈ 𝑁  as well. So the whole
expression is in 𝑁 , implying 𝑔1𝑔2𝑁 = 𝑔3𝑔4𝑁  as desired.

Exercise 2.22.  Verify that 𝑔𝑁𝑔−1 = {𝑔𝑛𝑔 : 𝑛 ∈ 𝑁} is a subgroup of 𝐺 for all 𝑔 ∈ 𝐺.

For pedagogical purposes we will write ℎ𝑔 = 𝑔ℎ𝑔−1. (This will become especially important
when we consider group actions later.) We are going to treat −𝑔 as the map sending
ℎ ↦ 𝑔ℎ𝑔−1. (The − indicates that the term we are “varying” or “feeding into” the map is
positioned at the dash.⁷) We refer to this map as “conjugation by 𝑔”.

Note: for each 𝑔 in 𝐺 we may define a map −𝑔. Put another way, there is a conjugation map
associated with every element of 𝐺.

Exercise 2.23.  Show that −𝑔 : 𝐺 → 𝐺 is an automorphism for every 𝑔 ∈ 𝐺.

Armed with all this knowledge, we may finally define and characterize normal subgroups.

⁶Note the identity of 𝐺
𝑁  is 𝑁 .

⁷This notation is more heavily used in Category Theory.
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Definition 2.24 (Normal Subgroups).  Given a subgroup 𝑁  of 𝐺, we say 𝑁  is
normal if any of the following equivalent properties are satisfied:

1. 𝑁 = ker 𝜑 for some homomorphism 𝜑 : 𝐺 → 𝐻 . (We don’t really care what 𝐻
is.)

2. 𝑁  is representation invariant.
3. 𝑔𝑁𝑔−1 ≤ 𝑁  for all 𝑔 ∈ 𝐺.
4. 𝑔𝑁𝑔−1 = 𝑁  for all 𝑔 ∈ 𝐺.

We write 𝑁 ⊴ 𝐺 if 𝑁  is normal.

We’ve already established that (2) ⇔ (3) and that (1) ⟺ (2). So all that is left is to make
an argument that (3) ⟺ (4).⁸

Suppose 𝑔𝑁𝑔−1 ≤ 𝑁  for all 𝑔 ∈ 𝐺. We’d like to show that for all 𝑛 ∈ 𝑁 , 𝑛 ∈ 𝑔𝑁𝑔−1 as
well.⁹ Note 𝑔−1𝑛𝑔1 ∈ 𝑁  so 𝑔(𝑔−1𝑛𝑔)𝑔−1 = 𝑛 ∈ 𝑔𝑁𝑔−1.

An important note: just because “𝑔𝑁𝑔−1 ≤ 𝑁  for all 𝑔 ∈ 𝐺” is equivalent to “𝑔𝑁𝑔−1 = 𝑁
for all 𝑔 ∈ 𝐺” does not mean that 𝑔𝑁𝑔−1 ≤ 𝑁  for some particular 𝑔 ∈ 𝐺 implies
𝑔𝑁𝑔−1 = 𝑁 . Here is a counterexample from https://math.stackexchange.com/a/107874.

Example 2.25.  Consider 𝑆ℤ. Define 𝜎 ∈ 𝑆ℤ as 𝜎 : 𝑥 ↦ 𝑥 + 1 and 𝐻 ≤ 𝑆ℤ as
𝐻 = {𝑓 ∈ 𝐻 : 𝑓(𝑥) = 𝑥 for all 𝑥 ≤ 0}.

Evidently 𝜎𝐻𝜎−1 ≤ 𝐻  but every permutation in 𝜎𝐻𝜎−1 fixes 1, meaning 𝜎𝐻𝜎−1 does
not contain 𝐻 .

We’ve spent all this time establishing some characterizations of normal subgroups. Let’s
end it off by finding a subgroup that is not normal. We cannot look in abelian groups
because we quickly see that every subgroup in an abelian group is normal. (Check it
yourself!) So look at the non-abelian 𝑆3, the group of permutations with 3 elements.

Exercise 2.26.  There is a permutation 𝜎 ∈ 𝑆3 that interchanges the first and second
element. Note |𝜎| = 2, so {1, 𝜎} is a subgroup. Find some 𝜋 ∈ 𝑆3 such that 𝜋𝜎𝜋−1

explicitly disproves normality.

One final note: normality is a fairly non-inheritable condition. Suppose 𝑁 ⊴ 𝐺. If 𝐻 ≤ 𝑁 ,
𝐻  is not necessarily normal in 𝑁  or 𝐺. And if 𝐻 ⊴ 𝑁 , 𝐻  still isn’t necessarily normal in 𝐺.

Example 2.27.  As a stupid counterexample, 1 ⊴ 𝐺 and 𝐺 ⊴ 𝐺, but obviously we
cannot conclude that any intermediate subgroup 𝐻  between 1 and 𝐺 (which includes
pretty much every subgroup) satisfies 𝐻 ⊴ 𝐺.

Exercise 2.28.  Prove that 𝑁 ≤ 𝐻 ≤ 𝐺 and 𝑁 ⊴ 𝐺 implies 𝑁 ⊴ 𝐻 . (Hint: Use the
conjugation characterization of normality.)

⁸You should convince yourself that we need −𝑔 to be an automorphism if we want (3) ⟺ (4),
particularly when 𝐺 is finite.

⁹This will give us 𝑔𝑁𝑔−1 ≥ 𝑁 .

Chapter 2 Groups 13

https://math.stackexchange.com/a/107874


Exercise 2.29.  Suppose 𝑁 ⊴ 𝐺 and 𝐻 ≤ 𝐺. Show that 𝑁 ∩ 𝐻 ⊴ 𝐻 .

Why is it important to have a good intuition for when normality is and is not preserved?
Because this allows us to discern when we can take quotient groups. (Remember,
representation invariance is one of the characterizations of normality, and it determines
when we can take quotients.)

2.3 The Ancillary Isomorphism Theorems

The First Isomorphism Theorem has some very enlightening applications that are useful in
their own right. They are the Second, Third, and Fourth Isomorphism Theorems.

First we must develop some facts about subsets of the form

𝐻𝐾 = {ℎ𝑘 : ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}.

(As you would expect, here we are defining 𝐻, 𝐾 ≤ 𝐺.)

Definition 2.30 (Normalizer).  The normalizer of 𝐻 ≤ 𝐺 is the subgroup 𝑁𝐺(𝐻)
that satisfies any of three equivalent characterizations:

• 𝑁𝐺(𝐻) = {𝑔 : 𝑔𝐻𝑔−1 = 𝐻}.
• 𝑁𝐺(𝐻) is the largest subgroup satisfying 𝐻 ⊴ 𝑁𝐺(𝐻) ≤ 𝐺.
• 𝑁𝐺(𝐻) is the set of all elements commuting with 𝐻 .

We will not prove any of these characterizations are equivalent. The one we will use most
often is the first.

If 𝐾 ≤ 𝑁𝐺(𝐻) then 𝐻𝐾 ≤ 𝐺 (here the sticking point is closure of 𝐻𝐾) and 𝐻 ⊴ 𝐻𝐾 .
Here is a sketch of the proof:

• Show that 𝐻𝐾 = 𝐾𝐻 ⟺ 𝐻𝐾 ≤ 𝐺.
• Show that 𝐾 ⊴ 𝐺 ⟹ 𝐻𝐾 = 𝐾𝐻 .
• Because 𝐾 ≤ 𝑁𝐺(𝐻) and obviously 𝐻 ≤ 𝑁𝐺(𝐻), we may conclude that

𝐾𝐻 ≤ 𝑁𝐺(𝐻) and deduce that 𝐻 ⊴ 𝐻𝐾 .

The flavor of algebraic manipulations required is once again similar to those in
Theorem 2.19.

Theorem 2.31 (Second Isomorphism Theorem).  Given 𝐻 ≤ 𝐺 and 𝑁 ≤ 𝑁𝐺(𝐻),
𝑁𝐻
𝐻 ≅ 𝑁

𝑁∩𝐻 .

The Second Isomorphism Theorem is also known as the Parallelogram Law. The diagram
below is a handy tip for remembering it.
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𝑁𝐻

𝑁 𝐻

𝑁 ∩ 𝐻
Figure 1: Solid lines represent normal subgroups.

Proof of Theorem 2.31.  Define 𝜑 : 𝑁 → 𝑁𝐻
𝐻  as 𝜑 : 𝑛 ↦ 𝑛𝐻 . Note ker 𝜑 = 𝑁 ∩ 𝐻  and

𝜑 is surjective. Applying the First Isomorphism Theorem on 𝜑 finishes. □

Note 𝑁 ⊴ 𝐺 is enough to guarantee 𝑁 ≤ 𝑁𝐺(𝐻). Most of the time, we will be using the
Second Isomorphism Theorem when one of the subgroups is normal.

Theorem 2.32 (Third Isomorphism Theorem).  Suppose 𝐾 ⊴ 𝐻 ⊴ 𝐺. Then

𝐺
𝐾
𝐻
𝐾

≅ 𝐺
𝐻

.

Here is the analogy. If 𝑎, 𝑏, 𝑐 ∈ ℚ∗, then 𝑎𝑏 =
𝑎
𝑐
𝑏
𝑐

. At least symbolically, groups behave the
exact same way.

Proof of Theorem 2.32.  Note 𝐻
𝐾 ⊴ 𝐺

𝐾 , so the map

𝜑 : 𝐺
𝐾

→ 𝐺
𝐻

𝜑 : 𝑔𝐾 ↦ 𝑔𝐻

is well-defined.

Obviously 𝜑 is surjective (i.e. im 𝜑 = 𝐺
𝐻 ), and ker 𝜑 = 𝐻

𝐾  as the only 𝐾-cosets mapped
to the 𝐻-coset id 𝐻  are those contained within 𝐻 . Then First Isomorphism gives us
exactly what we want. □

Now this last isomorphism theorem is the most important. Given 𝑁 ⊴ 𝐺, it helps us to
understand the subgroups 𝐻  where 𝑁 ≤ 𝐻 ≤ 𝐺. In fact, it tells us they are essentially the
subgroups of 𝐺

𝑁 .
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Theorem 2.33 (Fourth Isomorphism Theorem).  Take 𝑁 ⊴ 𝐺. There is an obvious
inclusion-preserving bijection between the 𝐻  where 𝑁 ≤ 𝐻 ≤ 𝐺 and the subgroups
of 𝐺

𝑁 . It is

𝐻 ↦ 𝐻
𝑁

.

This bijection also preserves normality, as

𝐻 ⊴ 𝐺 ⟺ 𝐻
𝑁

⊴ 𝐺
𝑁

.

The proof of Theorem 2.33 is not hard; it is a direct application of the ideas we have
developed throughout this section.

Why does this matter? Because we can now “factor” groups into a series of subgroups. If I
have 𝑁 ⊴ 𝐺, then it is often enough to understand the structure of 𝑁  and the structure of
𝐺
𝑁  (i.e. their subgroups). Yes, considering only these subgroups loses us every subgroup 𝐻
that isn’t either contained in 𝑁  or containing 𝑁 , so we are not really considering the full
picture. But selecting an appropriate 𝑁  (or even an appropriate series of normal subgroups
to successively quotient 𝐺 by) can give us a lot of information. We will see this when we
later study solvability, nilpotency, central series, and composition series.

2.4 Group Actions

Remember our theme about associating 𝜋𝑔 with each 𝑔 ∈ 𝐺? Here we take it to the extreme.
The motto is as follows:

Groups are collections of permutations on some set 𝑆 closed under composition and
inverse. The group operation is merely the composition of two permutations.

First to build some intuition, we will prove that every group is isomorphic to a group of
permutations. Here is how: consider a group 𝐺. As stated, each 𝑔 ∈ 𝐺 can be associated
with the permutation 𝜋𝑔 : ℎ ↦ 𝑔ℎ of 𝐺. There are two important observations about the
mapping 𝑔 ↦ 𝜋𝑔:

• this mapping is injective: if 𝜋𝑔 = 𝜋ℎ then 𝑔 = ℎ,
• it is a homomorphism: note 𝜋𝑔ℎ(𝑎) = 𝑔ℎ𝑎 and (𝜋𝑔 ∘ 𝜋ℎ)(𝑎) = (𝜋𝑔)(ℎ𝑎) = 𝑔ℎ𝑎 for all

𝑎 ∈ 𝐺.

So we have an injective homomorphism 𝐺 → 𝑆𝐺.¹⁰ Any function can be made into a
surjection (just take the codomain to be the image), so voila: we have an isomorphism from
𝐺 to a subgroup of 𝑆𝐺.

¹⁰Recall 𝑆𝐺 is the group of permutations of the set 𝐺.
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What shift in perspective have we made? Instead of performing a binary operation on 𝐺, we
have 𝐺, whose members are thought of as permutations on the set 𝐺, acting on the set
𝐺, whose members are just plain old elements.

By the way, this is called Cayley’s Theorem: “any group 𝐺 is isomorphic to a subgroup of
𝑆𝐺.”

The official definition of a group action is as follows.

Definition 2.34 (Group Action).  A group action is defined with a group 𝐺 and a set
𝑋, along with a binary operation ⋅ : 𝐺 × 𝑋 → 𝑋 such that

• id ⋅ 𝑥 = 𝑥,
• (𝑔1𝑔2) ⋅ 𝑥 = 𝑔1 ⋅ (𝑔2 ⋅ 𝑥).

It turns out that each 𝑔 ∈ 𝐺 can be associated with a permutation in 𝑆𝑋 . To be explicit, for
any particular 𝑔, the function 𝑥 ↦ 𝑔 ⋅ 𝑥 is a permutation since its two-sided inverse is
𝑥 ↦ 𝑔−1 ⋅ 𝑥.

Be careful: unlike Cayley’s Theorem, this association is not injective. As a counterexample,
consider the very boring group action where 𝑔 ⋅ 𝑥 = 𝑥 for all 𝑔 ∈ 𝐺. Just because 𝑔 is
injective does not mean

𝑔 ↦ (𝑥 ↦ 𝑔 ⋅ 𝑥)

is injective. It usually is not.

So we can actually think of a group action another way. We can think of 𝐺 as a subset of
𝑆𝑋 that acts on 𝑋. Actually, 𝐺 is a subgroup of 𝑆𝑋 , not just a subset. (Why?) So a group
action can also be defined just with a subset of 𝑆𝑋 . This should feel familiar coming from
Cayley’s Theorem.

If you are familiar with the computer science term “currying”, this is a great example of it.
Because functions of type 𝐺 × 𝑋 → 𝑋 biject with functions of type 𝐺 → (𝑋 → 𝑋), we
can think of ⋅ as a function of type

⋅ : 𝐺 → (𝑋 → 𝑋).

2.4.1 Orbits and Stabilizers

Suppose we start with some 𝑥 ∈ 𝑋. Which values in 𝑋 can we get to by applying the group
action on 𝑥?

Definition 2.35 (Orbit).  The orbit of 𝑥 ∈ 𝑋 is the set {𝑔 ⋅ 𝑥 : 𝑔 ∈ 𝐺}, which we will
denote as Orb(𝑥) from now on.

Importantly, the orbits of 𝑋 partition 𝑋. Here’s why: suppose we define a relation ∼ on 𝑋,
where for 𝑥, 𝑦 ∈ 𝑋,
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𝑥 ∼ 𝑦 ⟺ there exists some 𝑔 ∈ 𝐺 where 𝑥 ⋅ 𝑔 = 𝑦.

Exercise 2.36.  Check that ∼ is an equivalence relation on 𝑋. Further note that

Orb(𝑥) = Orb(𝑦) ⟺ 𝑥 ∼ 𝑦.

Conclude that the orbits of 𝑋 indeed partition 𝑋.

Furthermore, which 𝑔 fix 𝑥 under the group action?

Definition 2.37 (Stabilizer).  The stabilizer of 𝑥 ∈ 𝑋 is the set {𝑔 : 𝑔 ⋅ 𝑥 = 𝑥}, which
we will denote as Stab(𝑥) from now on.

Exercise 2.38.  Show that Stab(𝑥) ≤ 𝐺.¹¹

For typechecking purposes, remind yourself that Orb(𝑥) ⊆ 𝑋 and Stab(𝑥) ≤ 𝐺.¹²

There is an important relation between the sizes of the orbit and the stabilizer that comes
from bijecting the Stab(𝑥)-cosets of 𝐺 with the elements in Orb(𝑥).

Theorem 2.39 (Orbit-Stabilizer).  Suppose 𝐺 acts on 𝑋. For every 𝑥 ∈ 𝑋,

|Orb(𝑥)| = [𝐺 : Stab(𝑥)].

Proof of Theorem 2.39.  Because Stab(𝑥) ≤ 𝐺, we may look at the Stab(𝑥)-cosets of 𝐺.

Define a map 𝜑 : 𝐺
Stab(𝑥) → Orb(𝑥) where 𝜑 : 𝑔 Stab(𝑥) ↦ 𝑔 ⋅ 𝑥. This is obviously a

surjection, and this is an injection as

𝑔1 ⋅ 𝑥 = 𝑔2 ⋅ 𝑥 ⟹ (𝑔−1
1 𝑔2) ⋅ 𝑥 = 𝑥

⟹ 𝑔−1
1 𝑔2 ∈ Stab(𝑥)

⟹ 𝑔1 Stab(𝑥) = 𝑔2 Stab(𝑥).

□

In particular, what happens when we consider 𝐺 acting on itself with the action of
conjugation? More precisely, we define the action 𝑔 ⋅ 𝑥 = 𝑔𝑥𝑔−1 where 𝑔, 𝑥 ∈ 𝐺.¹³ We call
the orbits the conjugacy classes. In other words, a conjugacy class of an element 𝑥 ∈ 𝐺 is
“the stuff in 𝐺 we can get by conjugating 𝑥”.

Exercise 2.40.  Take a group 𝐺 and a subset 𝑆¹⁴ of 𝐺. We denote the set of all elements
in 𝐺 that commute with every element in 𝑆 as 𝐶𝐺(𝑆). Use Theorem 2.39 to show that
for all 𝑔 ∈ 𝐺, [𝐺 : 𝐶𝐺(𝑔)] is equal to the size of the conjugacy class of 𝑔.

¹¹It is also true that any subgroup of 𝐺 is the stabilizer of some action of 𝐺 on some set 𝑋.
¹²It is true by definition that Stab(𝑥) ⊆ 𝐺. It is also not too hard to show that Stab(𝑥) is actually a

subgroup of 𝐺.
¹³To be even more explicit, the group and the set considered in the group action are both 𝐺.
¹⁴Said subset is not necessarily a subgroup!
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What happens when we study the sizes of the conjugacy classes of 𝐺? This yields the Class
Equation.

Theorem 2.41 (Class Equation).  Consider a finite group 𝐺 with center 𝑍(𝐺) (see
Exercise 2.5) and conjugacy classes 𝑐1, …, 𝑐𝑛 comprising all the elements not in 𝑍(𝐺).
Let 𝑔𝑖 be an element in each 𝑐𝑖 (it does not matter which). Furthemore let 𝐶𝐺(𝑔𝑖)
denote the set of all elements that commute with 𝑔𝑖. Then

|𝐺| = |𝑍(𝐺)| + ∑
𝑛

𝑖=1
|𝐺 : 𝐶𝐺(𝑔𝑖)|.

Proof of Theorem 2.41.  Note 𝐶𝐺(𝑔𝑖) is the stabilizer of 𝑔𝑖 under the action 𝐺, so
|𝐺 : 𝐶𝐺(𝑔𝑖)| = |Orb(𝑔𝑖)|. Obviously the orbit of each center element is just itself (it
commutes with everything after all). So

|𝑍(𝐺)| + ∑
𝑛

𝑖=1
|𝐺 : 𝐶𝐺(𝑔𝑖)| = the sum of the sizes of the orbits of 𝐺,

which is obviously equal to |𝐺|. □

Similarly, it is generally true that for some 𝐺 acting on some finite 𝑋, where

• |Fix(𝑋)| is the set of all 𝑥 ∈ 𝑋 fixed under all 𝑔 ∈ 𝐺,
• and the orbits Orb(𝑥1), …, Orb(𝑥𝑛) partition the rest of 𝑋 not in Fix(𝑋),

|𝑋| = |Fix(𝑋)| + ∑
𝑛

𝑖=1
[𝐺 : Stab(𝑥𝑖)].

The proof is identical to that of Theorem 2.41.

Exercise 2.42 (Burnside's Lemma).  Suppose finite group 𝐺 acts on set 𝑋. Show that
the number of orbits of 𝑋 under 𝐺 is equal to

1
|𝐺|

∑
𝑔∈𝐺

|Fix(𝑔)|.

Hint: Show that

∑
{𝑔∈𝐺}

|Fix(𝑔)| = ∑
{𝑥∈𝑋}

|Stab(𝑥)|.

Then finish with Theorem 2.39.

Now we will explore two applications of the class equation that are important in their own
right. (Meaning that you will be expected to remember these facts.)

Example 2.43.  The center of a group with order 𝑝𝑘 is non-trivial.

Solution to Example 2.43.  Note |𝐺 : 𝐶𝐺(𝑔𝑖)| is divisible by 𝑝 as 𝐶𝐺(𝑔𝑖) ≠ 𝐺. Since |𝐺|
is also divisible by 𝑝, the class equation
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|𝐺| = |𝑍(𝐺)| + ∑
𝑛

𝑖=1
|𝐺 : 𝐶𝐺(𝑔𝑖)|

implies |𝑍(𝐺)| must also be divisible by 𝑝. So |𝑍(𝐺)| ≠ 1. □

Example 2.44 (Cauchy's Theorem).  If 𝐺 is a finite group whose order is divisible by
𝑘, then it has a subgroup of order 𝑝.

Actually, it is enough to find an element 𝑔 ∈ 𝐺 with order 𝑝. For then the cyclic subgroup
{id, 𝑔, 𝑔2, …𝑔𝑝−1} has order 𝑝.

Solution to Example 2.44.  Define the set

𝑋 = {(𝑔1, …, 𝑔𝑝) : 𝑔𝑖 ∈ 𝐺, 𝑔1 ⋅ … ⋅ 𝑔𝑛 = id},

i.e. the set of 𝑝-tuples in 𝐺 where the product of the entries is id, and define a group
action that cycles the entries of 𝑆 by 1 slot.¹⁵ Note |𝑋| = 𝑔𝑝−1: the first 𝑝 − 1 entries of
an element in 𝑆 fix the last element (because it must be the inverse of the product of
the first 𝑝 − 1 elements). Since 𝑝 divides 𝑔, 𝑝 also divides |𝑋|.

Note the fixed points under this group action are the elements of the form (𝑔, …, 𝑔) and
every other orbit has size 𝑝. Since 𝑝 divides 𝑋 and

|𝑋| = |Fix(𝑋)| + ∑
𝑛

𝑖=1
[𝐺 : Stab(𝑥𝑖)],

we must have that 𝑝 divides |Fix(𝑋)|. Since (id, …, id) ∈ Fix(𝑋), we must have some
other element (𝑔, …, 𝑔) ∈ Fix(𝑋). This corresponds to some 𝑔 ≠ id such that 𝑔𝑝 = id,
as desired. □

2.5 Sylow’s Theorems

Here we extend Cauchy’s Theorem. If 𝐺 is a finite group whose order is divisible by 𝑝𝑘 and
not 𝑝𝑘+1, we want to study the subgroups of 𝐺 with order 𝑝𝑘. Our study of these subgroups
will yield facts known as Sylow’s Theorems.

First we would like to establish that these subgroups of order 𝑝𝑘 exist. We will call the set of
all such subgroups the Sylow 𝑝-subgroups of 𝐺 and denote it as Syl𝑝(𝐺). Here is how we
prove there is a Sylow 𝑝-subgroup.

• We induct on |𝐺| to show the existence of a Sylow 𝑝-subgroup.
• If 𝑝 ∣ |𝑍(𝐺)| then by Cauchy’s, there is some 𝑁 ≤ 𝑍(𝐺) with order 𝑝. Then there is

some 𝑃
𝑁 ≤ 𝐺

𝑁  with order 𝑝𝑘−1 by the inductive hypothesis. Thus |𝑃 | = 𝑝𝑘.
• Otherwise use the class equation

|𝐺| = |𝑍(𝐺)| + ∑
𝑛

𝑖=1
|𝐺 : 𝐶𝐺(𝑔𝑖)|

¹⁵You can make the underlying group have two elements, the details of the group do not matter.
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to conclude that there exists some 𝐶𝐺(𝑔𝑖) such that |𝐺 : 𝐶𝐺(𝑔𝑖)| is not divisible by 𝑝.
(This is because |𝑍(𝐺)| is not divisible by 𝑝 where |𝐺| is.)

Then |𝐶𝐺(𝑔𝑖)| is divisible 𝑝𝑘 and we are done by the inductive hypothesis.

Now we have a Sylow 𝑝-subgroup 𝑃 . What happens when we conjugate 𝑃 ? Suppose all the
conjugates are {𝑃1, …, 𝑃𝑛}. Now take any subgroup 𝐻 ≤ 𝐺. We may define a group action
with 𝐻  and {𝑃1, …, 𝑃𝑛}. The elements of 𝐻  act on {𝑃1, …, 𝑃𝑛} via conjugation, and this
actions forms orbits 𝒪1 ∪ … ∪ 𝒪𝑎.

Without loss of generality suppose 𝑃𝑖 ∈ 𝒪𝑖 for all 1 ≤ 𝑖 ≤ 𝑎, meaning 𝑃𝑖 represents the
orbit 𝒪𝑖. By Theorem 2.41,

𝑛 = |𝒪1| + … + |𝒪𝑎|,

and by Theorem 2.39 |𝒪𝑖| = |𝐻 : 𝑁𝐻(𝑃𝑖)|. By definition 𝑁𝐻(𝑃𝑖) = 𝑁𝐺(𝑃𝑖) ∩ 𝐻 .

Now we take for granted the fact that for any 𝑃 ∈ Syl𝑝(𝐺) and 𝐻 ≤ 𝐺 where |𝐻| = 𝑝𝑎,
𝐻 ∩ 𝑁𝐺(𝑃 ) = 𝐻 ∩ 𝑃 .¹⁶ This yields |𝒪𝑖| = [𝐻 : 𝑃𝑖 ∩ 𝐻], and so the class equation becomes

𝑛 = [𝐻 : 𝑃1 ∩ 𝐻] + … + [𝐻 : 𝑃𝑎 ∩ 𝐻].

Now we will take full advantage of the fact that 𝐻  is arbitrary and take some 𝐻  that reveal
interesting facts about the Sylow 𝑝-subgroups. Because 𝐻  is arbitrary taking 𝐻 = 𝑃1
implies

𝑛 = 1 + [𝑃1 : 𝑃2 ∩ 𝑃1] + … + [𝑃1 : 𝑃𝑎 ∩ 𝑃1],

and as none of the other 𝑃𝑖 are equivalent to 𝑃1, we may conclude that [𝑃1 : 𝑃𝑖 ∩ 𝑃1] is
divisible by 𝑝, as 𝑃𝑖 ∩ 𝑃1 is a proper subgroup of 𝑃1. So 𝑛 ≡ 1 (mod 𝑝).

By the way, if 𝐻  is a Sylow 𝑝-subgroup of 𝐺 and 𝐻  is not equal to any of the 𝑃𝑖, then

𝑛 = [𝐻 : 𝑃1 ∩ 𝐻] + … + [𝐻 : 𝑃𝑎 ∩ 𝐻]

and each of the [𝐻 : 𝑃𝑖 ∩ 𝐻] is divisible by 𝑝, as 𝑃𝑖 ∩ 𝐻  is a proper subgroup of 𝐻 . This
contradicts the fact that 𝑛 ≡ 1 (mod 𝑝). So actually, every Sylow 𝑝-subgroup must be one of
the 𝑃𝑖. In other words, every Sylow 𝑝-subgroup is conjugate to every other Sylow 𝑝-
subgroup. There are two important implications here.

• The number of Sylow 𝑝-subgroups is equal to 𝑛, which is congruent to 1 modulo 𝑝.
• Exercise 2.40 implies that 𝑛 = [𝐺 : 𝑁𝐺(𝑃 )]. Notably, as [𝐺 : 𝑁𝐺(𝑃 )] divides [𝐺 : 𝑃 ],

we must have that 𝑛 divides [𝐺 : 𝑃 ].

There is one final question we can ask. We know there is a subgroup of order 𝑝 and order
𝑝𝑘, but what about the powers of 𝑝 in between? It turns out that for any 𝑎 ≤ 𝑘, there is a
subgroup of 𝐺 with order 𝑝𝑎. In fact, we can find a subgroup of any Sylow 𝑝-subgroup with
order 𝑝𝑎. The proof is nearly identical to that of the existence of a Sylow 𝑝-subgroup. Here
is how it goes.

¹⁶The proof relies on the fact that |𝐻𝐾| = |𝐻||𝐾|
|𝐻∩𝐾|  for any 𝐻, 𝐾 ≤ 𝐺, which we have neglected to prove

for purposes of streamlining this text.
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• Induct on 𝑘.
• Cauchy’s says there is some 𝑁 ⊴ 𝐺 with order 𝑝, now |𝐺

𝑁 | = 𝑝𝑘−1. By the inductive
hypothesis there is some 𝐻𝑁 ⊴ 𝐺

𝑁  with order 𝑝𝑘−2, so |𝐻| = 𝑝𝑘−1. To achieve all smaller
𝑎, just look at 𝐻 .

Summarized, here are all of Sylow’s Theorems. We will be fairly exhaustive when listing
them out.

Theorem 2.45 (Sylow's Theorems).  Given a finite group 𝐺 whose order is divisible
by 𝑝𝑘 and not 𝑝𝑘+1, denote Syl𝑝(𝐺) as the set of subgroups of 𝐺 with order 𝑝𝑘. Then

• |Syl𝑝(𝐺)| ≡ 1 (mod 𝑝).¹⁷
• |Syl𝑝(𝐺)| divides [𝐺 : 𝑃 ].
• For every 𝑃 ∈ Syl𝑝(𝐺), |Syl𝑝(𝐺)| = [𝐺 : 𝑁𝐺(𝑃 )].
• All the Sylow 𝑝-subgroups are conjugate to each other, that is, if 𝑃 , 𝐻 ∈ Syl𝑝(𝐺),

then there is some 𝑔 ∈ 𝐺 such that 𝑔𝑃𝑔−1 = 𝐻 .
• Every Sylow 𝑝-subgroup has a normal subgroup of order 𝑝𝑎 for all 𝑎 ≤ 𝑘.

2.6 Series of Subgroups

2.6.1 Solvability and Nilpotence

This section marks a transition in our treatment of group theory. In the introduction, we
have stated that rigor and full proofs will not be as emphasized in this primer. So far we
have actually been fairly rigorous. This is because the proofs so far have been relatively
short. Now the proofs get longer, and so we will skip many of them.

We have often asked, for subgroups 𝐻, 𝐾 ≤ 𝐺, what does {𝑘𝐻𝑘−1 : 𝑘 ∈ 𝐾} look like? In
other words, what is the orbit of conjugation on 𝐻  via 𝐾? To put it even more abstractly,
how “normal” or even “abelian” is 𝐻  in relation to 𝐾?

This is all well and good, but we are missing a certain aspect of symmetry. Instead, it may
make sense to ask what the set {ℎ𝑘ℎ−1𝑘−1 : ℎ ∈ 𝐻, 𝑘 ∈ 𝐾} looks like.

Definition 2.46 (Commutator).  The commutator of elements ℎ, 𝑘 ∈ 𝐺 is
[ℎ, 𝑘] = ℎ𝑘ℎ−1𝑘−1. The commutator subgroup of subgroups 𝐻, 𝐾 ≤ 𝐺 is the
smallest subgroup [𝐻, 𝐾] containing the set of commutators between 𝐻  and 𝐾 , i.e.
{ℎ𝑘ℎ−1𝑘−1 : ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}.

Pay close attention to the fact that the commutator subgroup is “the smallest subgroup
containing the set of commutators”. This is because the set of commutators is not
necessarily closed under multiplication.

¹⁷This implies there must exist a Sylow 𝑝-subgroup, for 0 is not congruent to 1 modulo 𝑝.

22 Section 2.6.1 Solvability and Nilpotence



On that note, we have never described the smallest subgroup containing a subset 𝑆 ⊆ 𝐺. It
turns out to be what you’d expect: the set of all elements you get by repeatedly multiplying
and taking inverses of the elements in 𝑆. In symbols, this subgroup is

{𝑠1…𝑠𝑛 : 𝑠𝑖 ∈ 𝑆 or 𝑠−1
𝑖 ∈ 𝑆, 𝑛 ∈ ℕ}.

It may be fruitful to prove this is true.¹⁸

The commutator subgroup is in some sense a measure of how commutative 𝐻  and 𝐾 are. If
they are commutative, then every commutator will turn out to be 1 and the commutator
subgroup is thus trivial. And if they are not commutative, and 𝐻  and 𝐾 are sufficiently big,
then it is possible for [𝐻, 𝐾] = 𝐺. And results in between, where the commutator subgroup
is not trivial nor the entirety of 𝐺, are also possible.

The commutator subgroup is also a symmetric measure. More precisely, it is the case that
[𝐻, 𝐾] = [𝐾, 𝐻]. (This is worth proving!)

A natural question to ask is how commutative 𝐺 itself is. And a measure of that is [𝐺, 𝐺]. In
fact, there is a notion in which it is the “best” measure of how abelian 𝐺 is.

Theorem 2.47.  Given a group 𝐺, [𝐺, 𝐺] is the smallest group such that 𝐺
[𝐺,𝐺]  is

abelian.
• If 𝐻 ⊴ 𝐺 and 𝐺

𝐻  is abelian, then [𝐺, 𝐺] ≤ 𝐻 .
• If 𝐻 ⊴ 𝐺 and [𝐺, 𝐺] ≤ 𝐻 , then 𝐺

𝐻  is abelian.

Proof of Theorem 2.47.  First we ought to show 𝐺
[𝐺,𝐺]  is well-defined, i.e. [𝐺, 𝐺] ⊴ 𝐺.

This is easy once you recall −𝑔 is an automorphism (see Exercise 2.23), as for all 𝑔1, 𝑔2,
𝑔3 ∈ 𝐺,

[𝑔1, 𝑔2]
𝑔3 = (𝑔1𝑔2𝑔−1

1 𝑔−1
2 )𝑔3

= 𝑔𝑔3
1 𝑔𝑔3

2 (𝑔−1
1 )𝑔3(𝑔−1

2 )𝑔3

= [𝑔𝑔3
1 , 𝑔𝑔3

2 ].

Strictly we have only shown that −𝑔 maps generators of [𝐺, 𝐺] to other generators of
[𝐺, 𝐺], but as −𝑔 is an automorphism, that is enough.

Now for all 𝑔1, 𝑔2 ∈ 𝐺,
• (𝑔1𝐻)(𝑔2𝐻)(𝑔−1

1 𝐻)(𝑔−1
2 𝐻) = (𝑔1𝑔−1

1 𝑔2𝑔−1
2 )𝐻 = 𝐻  as 𝐺

𝐻  is abelian, implying
that 𝑔1𝑔2𝑔−1

1 𝑔−1
2 ∈ 𝐻 .

• Note [𝐺, 𝐺] ⊴ 𝐺 and 𝐻 ≤ 𝐺 yields [𝐺, 𝐺] ⊴ 𝐻  (see Exercise 2.28). So
Theorem 2.32 (Third Isomorphism) yields

𝐺
𝐻

=
𝐺

[𝐺,𝐺]
𝐻

[𝐺,𝐺]
.

¹⁸This is the sort of fact covered in the start of a proper abstract algebra text, whereas here we omit the
proof because this fact feels true enough.
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But since 𝐺
[𝐺,𝐺]  is abelian, we know that 𝐺

𝐻  is.¹⁹

□

The specific fact that [𝐺, 𝐺] ⊴ 𝐺 will become very useful soon.

Another related question will also arise quite naturally: “what if I kept taking commutator
subgroups on 𝐺?” There are two ways in which we can “keep taking commutator
subgroups”:

• Define 𝐺0 = 𝐺 and 𝐺(𝑛+1) = [𝐺(𝑛), 𝐺(𝑛)]. This yields the derived series.
• Define 𝐺0 = 𝐺 and 𝐺𝑛+1 = [𝐺𝑛, 𝐺]. This yields the lower central series.

In both the derived and lower central series, the subgroups 𝐺𝑛 decrease. More precisely, for
all 𝑛, 𝐺(𝑛+1) ≤ 𝐺(𝑛) and 𝐺𝑛+1 ≤ 𝐺𝑛. This is obvious for the derived series (closure of
groups) but not so obvious for the lower central series. It turns out the latter decreases
because 𝐺𝑛 ⊴ 𝐺 for each 𝑛. This can easily be proven by induction once you show the
following fact.

Exercise 2.48.  Suppose 𝐻 ⊴ 𝐺. Show that [𝐻, 𝐺] ⊴ 𝐺.

It is also the case that 𝐻 ⊴ 𝐺 ⟺ [𝐻, 𝐺] ≤ 𝐻 . Simply use the fact that normality means
𝑔ℎ𝑔−1 ∈ 𝐻  for all ℎ ∈ 𝐻 . Combining this fact with with Exercise 2.48 easily yields that
𝐺𝑛+1 ≤ 𝐺𝑛 for all 𝑛 ∈ ℕ.

So a natural question to ask is: given these sequences decrease, how long does it take for
these sequences to reach id (the trivial subgroup)? More pertinently, for which groups do
these sequences reach id?

• If the derived series of 𝐺 reaches id (i.e. there is some 𝑛 such that 𝐺(𝑛) = id), then we
say 𝐺 is solvable. And the smallest 𝑛 such that 𝐺(𝑛) = id is the derived length.

• If the lower central series of 𝐺 reaches id (i.e. there is some 𝑛 such that 𝐺𝑛 = id), then
we say 𝐺 is nilpotent. And the smallest 𝑛 such that 𝐺𝑛 = id is the nilpotence class.

For obvious reasons, 𝐺(𝑛) ≤ 𝐺𝑛 for all 𝑛 ∈ ℕ. So every nilpotent group is solvable.

Example 2.49.  But not every solvable group is nilpotent. For example, 𝑆3 (i.e. the
group of permutations of a set with 3 elements) is not nilpotent. But it is solvable.

Why does the derived length matter? Because it is the shortest length of any series that
“look like the derived series”. (Same for the nilpotence class.)

Theorem 2.50.  A group 𝐺 is solvable if and only if there is a series

𝐺 = 𝐺0 ⊵ 𝐺1 ⊵ … ⊵ 𝐺𝑘 = id

where 𝐺𝑖/𝐺𝑖+1 is abelian for all 𝑖.

Furthermore, if 𝐺 is solvable, then the length of this series is at least the length of the
derived series.

¹⁹It is trivial to show in general that if 𝐺 is abelian then 𝐺
𝐻  is abelian for any 𝐻 ≤ 𝐺.
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Proof of Theorem 2.50.  If 𝐺 is solvable then its derived series is such a series and there
is nothing to show.

If such a series exists, because 𝐺(𝑛+1) is the smallest normal subgroup of 𝐺(𝑛) where
𝐺𝑛 ⊵ 𝐺(𝑛+1), we may easily show by induction that 𝐺𝑖 ≥ 𝐺(𝑖) for all 𝑖. Thus 𝐺 is
solvable and the length of this series is at least the length of its derived series. □

Now we turn to other series of normal subgroups.

Definition 2.51 (Subnormal Series).  A subnormal series is a series
id = 𝐺0 ⊴ … ⊴ 𝐺𝑛 = 𝐺.

The derived series is a subnormal series.

Definition 2.52 (Central Series).  A central series is a subnormal series

id = 𝐺0 ⊴ … ⊴ 𝐺𝑛 = 𝐺

where 
𝐺𝑖+1
𝐺𝑖

≤ 𝑍( 𝐺
𝐺𝑖

), or equivalently, [𝐺, 𝐺𝑖+1] ≤ 𝐺𝑖.

A priori it is not obvious the two conditions are equivalent, but for purposes of conciseness
we omit the proof. We will mostly be using the first characterization.

By the way, when we turn the inequality into an equality, i.e. construct a series where
𝐺𝑖+1
𝐺𝑖

= 𝑍( 𝐺
𝐺𝑖

), we get the upper central series. It is also a fact that the length of the
upper central series is equal to the length of the lower central series.²⁰

It turns out that

• a central series exists if and only if 𝐺 is nilpotent,
• and supposing a central series exists, 𝑛 is at least the nilpotence class of 𝐺.

There is a somewhat surprising logarithmic relation between the derived length and
nilpotence class. Suppose 𝑙 and 𝑐 are the derived length and nilpotence class of some group
𝐺, respectively. Then 𝑙 ≤ log2(𝑐) + 1. We will not prove this, but I did want to mention it
since this is an interesting fact.

2.6.2 Composition Series

Composition series can be used to “factor” a group into a chain of normal groups.

Definition 2.53 (Simple Group).  A group 𝐺 is simple if and only if the only normal
subgroups of 𝐺 are id and 𝐺.

²⁰You can prove this via induction on the nilpotence class.
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Definition 2.54 (Composition Series).  A composition series is a subnormal series

id = 𝐺0 ⊴ … ⊴ 𝐺𝑛 = 𝐺

where each 𝐺𝑖+1
𝐺𝑖

 is simple.

Every finite group has a composition series. Here is how you would go about finding one.

• Look at the group 𝐺. Does it have any interesting normal subgroups? If not, we are
done.

• So suppose 𝑁 ⊴ 𝐺 where 𝑁 ≠ id, 𝐺. Then repeat this process for 𝑁  and 𝐺
𝑁 , and use

Theorem 2.33 to get a series 𝑁 = 𝐺𝑘 ⊴ … ⊴ 𝐺𝑛 = 𝐺 from our series
𝑁
𝑁 = 𝐻0 ⊴ … ⊴ 𝐻𝑛−𝑘 = 𝐺

𝑁 .
• Then we may use our series id = 𝐺0 ⊴ … ⊴ 𝐺𝑘 = 𝑁 , and then we may adjoin our

series 𝑁 = 𝐺𝑘 ⊴ … ⊴ 𝐺𝑛 = 𝐺 to create a series for 𝐺.

To be explicit, in each of the chains we have constructed, successive quotients are simple.

We know this process will stop because the order of 𝐺 is finite. In fact, this can easily be
rephrased as a proof by induction which shows the existence of a composition series for
every finite group.

For instance, the only composition series of 𝑍6 are

id ⊴ 𝑍2 ⊴ 𝑍6 and id ⊴ 𝑍3 ⊴ 𝑍6.

What do you notice about the quotients of successive subgroups? It turns out they are the
same. Because we may “recursively” construct composition series by “splitting up” the
group into 𝑁  and 𝐺

𝑁 , we have reason to suspect that any two composition series are
essentially identical. It turns out they are.

Theorem 2.55 (Jordan-Holder).  If a group 𝐺 has composition series

id = 𝐺0 ⊴ … ⊴ 𝐺𝑛 = 𝐺 and id = 𝐻0 ⊴ … ⊴ 𝐻𝑚

then 𝑛 = 𝑚, and we may pair quotients of the form 𝐺𝑖+1/𝐺𝑖 with quotients of the
form 𝐻𝑗+1/𝐻𝑗 such that 𝐺𝑖+1/𝐺𝑖 ≅ 𝐻𝑗+1/𝐻𝑗. More formally, there is a bijection 𝜋
such that 𝐺𝜋(𝑖)/𝐺𝜋(𝑖)−1 ≅ 𝐻𝑖/𝐻𝑖−1.

The proof is painful. You may read one at https://dennisc.net/jordan-holder.pdf.

There is a natural analogy between groups uniquely factoring into simple quotients and
positive integers uniquely factoring into primes. At the same time, every prime factorization
is uniquely associated with a positive number. So it is natural to ask whether a factorization
of simple quotients is uniquely associated with a group.

The answer is no. For instance,

id ⊴ 𝑍𝑝 ⊴ 𝑍𝑝2 and id ⊴ 𝑍𝑝 ⊴ 𝑍𝑝 × 𝑍𝑝
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are both composition series with the same quotients, but clearly 𝑍𝑝2  and 𝑍𝑝 × 𝑍𝑝 are not
isomorphic.

2.6.3 Why should you care?

Now that we have spent a good chunk of time analyzing groups and their properties —
subgroups, normality, actions, solvability, and more — it is natural to ask, “who cares?” And
this is a genuinely good question. Up until now, you have been given no reason (perhaps
besides Exercise 2.42) to care about groups whatsoever. We have developed this complicated
machinery yet have not covered any but the most trivial of uses for group theory outside of
more group theory.

The most elementary use of these concepts, normality and solvability in particular, is in
Galois Theory. Suppose that we have fields 𝐹 ≤ 𝐾 and would like to find the fields
𝐹 ≤ 𝐿 ≤ 𝐾 . Galois Theory not only tells us how many of these fields there are, but how
they are structured. Among other things, this can be used to prove the Fundamental
Theorem of Algebra. Furthermore, you can determine whether a polynomial like 𝑥5 − 𝑥 − 1
has algebraic roots or not. (It does not.) And all this is done through the machinery of
groups.

As for groups themselves, they have many interesting real-world applications, none of
which I am qualified to speak on. Suffice it to say that reality informs us we should care
about groups, much the same way it informs us we should care about real analysis.

These series of subgroups, particularly the composition series as discussed earlier, are
powerful tools that can be used to characterize groups and understand their structure. In
fact, that is what we are about to do next.

2.7 Characterizing Groups of Finite Order

So far we have spent a lot of time discussing what groups do: they commute, act, normalize,
solve, etc. We now give a brief overview of what they look like. (Because this section is
fairly non-central to the rest of our discussion of algebra, we will choose to omit the vast
majority of proofs.)

We may use Jordan-Holder to gain some degree of understanding about individual groups.
Furthermore, we may factor finite abelian groups and finite nilpotent groups into direct
products.

Now what if we wanted to characterize all the groups of order 𝑛 up to isomorphism for
some fixed positive integer 𝑛? Suppose 𝐺 is a group with order 𝑛.

For purposes of having a concrete example we will set 𝑛 = 21. Here is the overall strategy.
We use Sylow’s Theorem to determine that 𝐺 must have a normal subgroup 𝑁  of order 7,
as

• the number of Sylow 7-subgroups must divide 3,
• and this number must also be congruent to 1 modulo 7,
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so there exists a unique subgroup of order 7. (Meaning it is normal as 𝑔𝑁𝑔−1 is also a
subgroup of order 7, so 𝑔𝑁𝑔−1 better be the same as 𝑁 .)

Cauchy’s also states that we must have some subgroup 𝐻  of order 3 (𝐻  need not be
normal). Notably, 𝑁 ∩ 𝐻 = id and 𝑁𝐻 = 𝐺. Importantly, every element in 𝐺 can be
uniquely represented as a product 𝑛ℎ with 𝑛 ∈ 𝑁  and ℎ ∈ 𝐻 . Now bear with me as we
define the semidirect product seemingly at random. You will see why it matters very soon.

Definition 2.56 (Semidirect Product).  Suppose 𝑁  and 𝐻  are groups and
𝛼 : 𝑁 → Aut(𝐻) is a homomorphism from 𝑁  to the automorphisms of 𝐻 . Then we
define the group 𝑁 ⋊𝛼 𝐻  as follows: the elements are ordered pairs (𝑛, ℎ) with 𝑛 ∈ 𝑁
and ℎ ∈ 𝐻 , and the group operation is defined as

(𝑛1, ℎ1)(𝑛2, ℎ2) = (𝑛1𝛼(ℎ1)(𝑛2), ℎ1ℎ2).

Note that 𝛼(𝑛1) returns a function — in particular, an automorphism in 𝐻  — which is why
we can then apply it to ℎ2.

It is not immediately obvious that the group operation defined is associative and admits an
inverse, but performing the verifications is straightforward.

Now, supposing that 𝑁 ∩ 𝐻 = id and 𝑁𝐻 = 𝐺, if we set 𝛼(𝑛) = 𝑛ℎ𝑛−1, we get that 𝐺 is
isomorphic to 𝑁 ⋊𝛼 𝐻 . The isomorphism is the obvious one: define 𝜑 : 𝐺 → 𝑁 ⋊𝛼 𝐻  as
𝜑 : 𝑛ℎ ↦ (𝑛, ℎ). I highly suggest you check this isomorphism is actually 1) well-defined
and 2) a homomorphism (bijectivity is obvious).

So if 𝐺 is a group of order 21, then it must be isomorphic to some 𝑁 ⋊𝛼 𝐻 , where 𝑁  is a
group of order 7 and 𝐻  is a group of order 3. Furthermore, every valid triple 𝑁, 𝐻, ⋊𝛼
admits a group of order 21 as the semidirect product always forms a group. So finding these
groups of order 21 reduces to finding the semidirect products that arise from these triples.

Now it is important to note that different 𝛼 may yield isomorphic groups. In fact,
supposing we fix the structure of 𝑁  and 𝐻 , if there is some automorphism 𝛽 : 𝐻 → 𝐻 ,
then ℎ ↦ 𝛼(𝛽(ℎ)) is a homomorphism from 𝐻  to Aut 𝑁 , and furthermore,
𝑁 ⋊𝛼 𝐻 ≅ 𝑁 ⋊𝛼∘𝛽 𝑁 . The automorphism is

(𝑛, ℎ)𝛼 ↦ (𝑛, 𝛽−1(ℎ))
𝛼∘𝛽

.

I highly recommend you verify this.

Now we finish our analysis on the groups of order 21. The structure of 𝑁  and 𝐻  are fixed as
there is only one group of order 3 and one group of order 7, the cyclic groups. Say 𝐻  is
generated by the element ℎ, i.e. ℎ ≠ id ∈ 𝐻 . Since Aut 𝑁  is cyclic with order 6 (you should
verify this yourself), we may conclude that the only homomorphisms from 𝐻  to Aut 𝑁  are
the 𝛼𝑖 where

𝛼1(ℎ) = id, 𝛼2(ℎ) = 𝑔 ↦ 𝑔2, and 𝛼3(ℎ) = 𝑔 ↦ 𝑔4.
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(Note 𝛼𝑖(ℎ) uniquely determines 𝛼𝑖 as 𝐻  is cyclic.) Obviously 𝛼1 yields the group
ℤ/7ℤ × ℤ/3ℤ, which is abelian. And obviously 𝛼2 and 𝛼3 do not yield abelian groups (it is
not hard to find an explicit counterexample).

Now here’s the kicker: 𝛼2 and 𝛼3 yield isomorphic groups. For 𝛽 : ℎ ↦ ℎ2 is an
automorphism in 𝐻 , and 𝛼3 = 𝛼2 ∘ 𝛽. So we actually have two distinct groups of order 21,
one abelian and the other not abelian.

2.8 Free Groups and Presentations

A word of warning: this section is fairly advanced. We will be introducing categorical
theoretic ideas, ideas which are quite difficult to grasp at first. There is no shame in skipping
this section.

We will work backwards in this section: first we will present an informal idea of a group
presentation. Then we will formally define a free group, and finally we will use it to
formally define a group presentation.

2.8.1 Presentations, informally

Recall the dihedral group 𝐷2𝑛. It is informally defined geometrically: we may compose
rotations with reflections. In fact, we have never defined it formally, so we may as well
make an attempt now.

Suppose we refer to the group element associated with a rotation shifting each vertex by 1
space as 𝑟.²¹ Furthermore select any arbitrary reflection and denote the corresponding group
element as 𝑠. Notice that

• 𝑟 and 𝑠 generate 𝐷2𝑛,
• 𝑟𝑛 = 𝑠2 = (𝑟𝑠)2 = id.

We say the group presentation of this group is

⟨𝑟, 𝑠 | 𝑟𝑛, 𝑠2, (𝑟𝑠)2⟩.

On the left side are the generators of the group. On the right side are the relations the
generators obey. To elaborate, each relation on the right side is a group element that is
defined to be equivalent to id

Intuitively, it feels like 𝑟𝑛 = 𝑠2 = (𝑟𝑠)2 is the correct amount of specificity to fully describe
the group, no more or less. We want the relations to be equal to id, but nothing “extra”.
Furthermore we want the presentation to be distinct from a “looser” set of relations, such as

⟨𝑟, 𝑠 | 𝑠2, (𝑟𝑠)2⟩.

We would like to formalize these ideas. The looser set of relations is satisfied by (our
intuitive notion of) 𝐷2𝑛. Perhaps more scarily, we can set 𝑟 = 𝑠 = id and declare that these
presentations really describe the trivial group. And since we have no formal definition of
𝐷2𝑛 to fall back on, who’s to say this is wrong?

²¹It does not matter what direction the rotation is in.
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This is why we need a more precise idea of a group presentation.

2.8.2 Free groups and presentations, formally

Define an alphabet Σ as a set of characters. Note that there is nothing stopping Σ from
being infinite! For convenience we will say Σ = {𝑎, 𝑏}.

Formally, a word is a finite sequence in Σ × ℤ. Informally, it is something like 𝑎𝑏𝑎2𝑏−3. We
will write words in this fashion rather than saying the word is the sequence
(𝑎, 1), (𝑏, 1), (𝑎, 2), (𝑏, −3).

Something like 𝑎𝑎−1𝑏 is a valid word. But as the exponents suggest, you ought to “simplify”
it down to 𝑏, because 𝑎 and 𝑎−1 ought to “multiply and cancel out”. Your intuition here
would be correct.

Definition 2.57 (Reduced Word).  Formally, a reduced word is a word where

• no two consecutive elements of the sequence have the same character,
• no element of the sequence has an exponent of 0.

We may reduce words according to the following algorithm: while either of the following
still remain,

• Combine a pair of consecutive elements with the same character, summing up their
exponents. For example, replace 𝑎2𝑎3 with 𝑎5.

• Remove any element with an exponent of 0. For example, remove 𝑎0 from the
sequence.

As an example,

𝑎𝑎−1𝑏 ⟶ 𝑎0𝑏 ⟶ 𝑏

is the correct series of reductions, and we say 𝑏 is the reduced form of 𝑎𝑎−1𝑏.

On the face of it, this algorithm is not generally deterministic: we may select any pair of
consecutive elements with the same character to combine, and we may select any element
with an exponent of 0 to eliminate. But it turns out that regardless of which order you
reduce in, you end up with the same reduced word.

We use reduced words to define the free group on an alphabet Σ.

Definition 2.58 (Free Group).  The free group on an alphabet Σ is the group where

• the underlying set is the set of reduced words in Σ,
• the group operation is “concatenate two words, then reduce the result”.

We denote this free group as Free(Σ).

For example, 𝑎𝑏2 ⋅ 𝑏−2𝑎𝑏 = 𝑎2𝑏.
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It turns out that Free(𝑆) is uniquely determined by the cardinality of the set 𝑆. Obviously if
two sets 𝐴 and 𝐵 have the same cardinality, then Free(𝐴) ≅ Free(𝐵). It is not so obvious
that if |𝐴| ≠ |𝐵| then Free(𝐴) and Free(𝐵) are not isomorphic. There are clever ways to
prove this, but we will outline a more straightforward proof instead.

Exercise 2.59.  Fill in the details for the following proof that |𝐴| ≠ |𝐵| implies
Free(𝐴) and Free(𝐵) are not isomorphic:

1. Argue that |Free(𝐴)| = |𝐴| when 𝐴 is uncountable.
2. Suppose 𝐴 is finite and |𝐴| ≤ |𝐵|. Consider a homomorphism

𝜑 : Free(𝐴) → Free(𝐵). View Free(𝐴) as a |𝐴|-dimensional vector space over ℤ
where the 𝑎th entry is the sum of the exponents of all the 𝑎-terms. Do the same
for 𝐵. Now 𝜑 can be viewed as a linear map between the vector spaces Free(𝐴)
and Free(𝐵). Conclude that 𝜑 cannot be surjective.

Thus if 𝜆 is a cardinal, we frequently just write Free(𝜆).

Definition 2.60 (Presentation).  A presentation of a group with a generating set Σ
and a relation set 𝑅 is the quotient group Free(Σ)

𝑁 , where 𝑁  is the smallest normal
subgroup containing 𝑅.

Note that the smallest normal subgroup containing 𝑅 is the smallest subgroup
containing 𝑅 and all of its conjugates in Free(Σ).

2.8.3 The Universal Mapping Property

We first define some notation.

Definition 2.61 (Restrictions).  Consider a function 𝑓 : 𝐴 → 𝐵. Let 𝑆 ⊆ 𝐴. Then we
define the function 𝑓 ↾ 𝑆 : 𝑆 → 𝐵 to be the unique function where for all 𝑠 ∈ 𝑆,
(𝑓 ↾ 𝑆)(𝑠) = 𝑓(𝑠). This is the restriction of 𝑓  under 𝑆.

Essentially, 𝑓 ↾ 𝑆 is identical to 𝑓 , but it only takes in values from 𝑆.

Free groups are interesting because they turn out to satisfy a universal property.
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Theorem 2.62 (Universal Property of the Free Group).  Given a set Σ, a group 𝐺,
and a function 𝜑 : Σ → 𝐺, there is a unique homomorphism 𝜓 : Free(Σ) → 𝐺 such
that 𝜓 ↾ Σ = 𝜑.

id

𝜑
𝜓

Σ Free(Σ)

𝐺
Figure 2: Equivalently, there is a unique 𝜓 such that the given diagram commutes.

We are abusing notation a little here. The identity function on Σ technically maps to Σ
rather than Free(Σ), but I trust you know what I mean when I write id.

Proof of Theorem 2.62.  To prove this theorem we need to show two things:
1. that there exists some satisfactory 𝜓,
2. and that any two satisfactory 𝜓1 and 𝜓2 must be one and the same.

Both parts are straightforward:
1. we may easily check that 𝜓 : 𝑔𝑛1

1 …𝑔𝑛𝑘
𝑘 ↦ 𝜑(𝑔1)

𝑛1…𝜑(𝑔𝑘)𝑛𝑘  suffices,
2. and in general, the behavior of a homomorphism on a group is determined by its

behavior on the generators, which means 𝜓1 and 𝜓2 are the same as they behave
identically on generating set Σ.

□

The First Isomorphism Theorem with Theorem 2.62 implies any group can be represented
with a presentation.

id

id
𝜓

𝐺Set Free(𝐺Set)

𝐺Group
Figure 3: There is a unique 𝜓 such that id ∘ 𝜓 = id. By the First Isomorphism Theorem,

Free(𝐺Set)
ker 𝜓 ≅ im 𝜓 = 𝐺Group. Since ker 𝜓 is obviously normal, ⟨𝐺Set | ker 𝜓⟩ is a presentation

of 𝐺.

Furthermore, it means that we can describe a homomorphism 𝜓 : Free(Σ) → 𝐺 merely by
describing a function 𝜑 : Σ → 𝐺. This is why presentations are even remotely viable: they
can describe any arbitrary group, and they can be used to specify the behavior of
homomorphisms.
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Universal properties are a fundamental idea in category theory. Because the concept of a
universal property will appear many more times (notably when we construct the tensor
product), we will very quickly develop the relevant category theoretic concepts to
appreciate universal properties in their full generality.

2.8.4 Category theory, briefly

Very often, we study some class of objects and functions between them, such as groups and
homomorphisms, or topological spaces and continuous functions. And very often, patterns
will emerge through wildly different classes of objects and functions. Thus in category
theory, we abstract to the level of studying objects of an arbitrary type and functions
between them.

Before we formally define a category, let us first give an informal picture of how they
should behave. In mathematics there is a general idea of studying structured sets and
functions that preserve the structure. For example, we might study groups and
homomorphisms. Or topologies and homeomorphisms. There are concepts and connections
that are universal between different structured sets/functions. Category theory is all about
studying these universal concepts.

In category theory, we study categories which consist of objects and arrows between
objects. Objects correspond to structured sets. Arrows correspond to structure-preserving
functions. And arrow composition follows much the same rules as function composition.

For example, there is a category called Group whose objects are groups and arrows are
homomorphisms between groups. And arrow composition is simply homomorphism
composition.

Now let us concretely define a category.

Definition 2.63 (Category).  A category 𝒞 consists of a class of objects, a class of
arrows, and a partial binary operation ∘ known as composition that takes arrows to
arrows, where

• each arrow 𝑓  is associated with a domain dom 𝑓  and codomain cod 𝑓 , both of
which are objects in 𝒞. We will write 𝑓 : 𝑎 → 𝑏 to denote that 𝑓  has domain 𝑎 and
codomain 𝑏;

• for any two arrows 𝑓  and 𝑔 where cod 𝑓 = dom 𝑔, there exists an arrow 𝑔 ∘ 𝑓
with dom (𝑔 ∘ 𝑓) = dom 𝑓  and cod (𝑔 ∘ 𝑓) = cod 𝑔. (If cod 𝑓 ≠ dom 𝑔, then
𝑔 ∘ 𝑓  is not a defined object and it makes no sense to say 𝑔 ∘ 𝑓 .)

• The associative law is satisfied by ∘; that is, ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓 , supposing
that all compositions are well-defined;

• for every object 𝑎, there exists an arrow id𝑎 : 𝑎 → 𝑎 such that for every arrow
𝑓 : 𝑥 → 𝑎, id𝑎 ∘ 𝑓 = 𝑓 , and for every arrow 𝑔 : 𝑎 → 𝑥, 𝑔 ∘ id𝑎 = 𝑔.

I am very deliberately using the word class in lieu of set. Very briefly, in mathematics we
are interested in collections of objects. Only some collections of objects may be constructed
as sets. For instance, the collection of all sets is not a set (for no set may contain itself), so
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we must consider it as a class. For more details, you may peruse https://dennisc.net/writing/
blog/sets-classes.

This distinction is important because we want to study the category of all sets whose
arrows are functions between sets, which we will aptly refer to as Set from now on. This
will be our prototypical example of a category, precisely because it highlights the analogy
between arrows in a category and functions between sets.

𝑥 ↦ |𝑥|
ℤ ℕ

Figure 4: ℤ and ℕ are objects of Set, and 𝑥 ↦ 𝑥 : ℤ → ℕ is an arrow with domain ℤ and
codomain ℕ.

Two important observations:
• Two distinct arrows may have the same domain and codomain, such as the functions

id : ℤ → ℤ and 𝑥 ↦ −𝑥 : ℤ → ℤ.
• The domain/codomain requirements for composing arrows is identical to those for

composing functions.

Now we define the dual of a category and the Cartesian product of two categories. (The
Cartesian product, in particular, is exactly what you think it is.) These definitions will come
in handy when we study hom-sets, but for now they serve as examples of categorical
constructions.

Definition 2.64 (Dual Category).  The dual of category 𝒞 is the category 𝒞op where
every arrow has its domain and codomain switched.

Definition 2.65 (Product Category).  The product of two categories 𝒞 and 𝒟 is the
category 𝒞 × 𝒟 where

• objects are of the form (𝑐, 𝑑), where 𝑐 is an object in 𝒞 and 𝑑 is an object in 𝒟,
• arrows are of the form (𝑓, 𝑔), where 𝑓  is an arrow in 𝒞 and 𝑔 is an arrow in 𝒟,
• composition is defined pairwise, that is, (𝑓2, 𝑔2) ∘ (𝑓1, 𝑔1) = (𝑓2 ∘ 𝑓1, 𝑔2 ∘ 𝑔1),
• and the identity arrow associated with (𝑐, 𝑑) is (id𝑐, id𝑑).

Example 2.66.  We may define the category of sets 𝒞 where there is a unique arrow
𝑋 → 𝑌  if and only if 𝑋 ⊂ 𝑌 . Then there is a unique arrow 𝑌 → 𝑋 in 𝒞op precisely
when 𝑌 ⊃ 𝑋.

The reason category theory is interesting is because we can draw comparisons between
categories. Just as a group homomorphism is a structure-preserving map between groups, a
functor is a structure-preserving map between categories.
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Definition 2.67 (Functor).  More precisely, a functor 𝐹 : 𝒞 → 𝒟 is a map that
• sends objects in 𝒞 to objects in 𝒟,
• sends arrows in 𝒞 to arrows in 𝒟,
• satisfies 𝐹(id𝑎) = id𝐹(𝑎),
• and satisfies 𝐹(𝑔 ∘𝒞 𝑓) = 𝐹(𝑔) ∘𝒟 𝐹(𝑓) for all arrows 𝑓 , 𝑔 in 𝒞 where 𝑔 ∘𝒞 𝑓  is

well-defined. In particular, this definition forces 𝐹(𝑔) ∘𝒟 𝐹(𝑓) to be well-defined.

Here is a trivial example of a functor, the forgetful functor on groups. Consider the
category of groups and the category of sets. There is a trivial functor 𝐹 : Group → Set
where 𝐹 : 𝐺 ↦ 𝐺 and 𝐹 : 𝜑 ↦ 𝜑. In other words, 𝐹  acts on objects by mapping groups to
their underlying set, and 𝐹  acts on arrows by mapping homomorphisms to themselves,
where these homomorphisms are just considered as functions in Set.

This is called the forgetful functor because we are literally forgetting the underlying
structure of Group when we take it to Set. We forget the group structure, treating groups as
just their underlying sets and homomorphisms as regular old functions.

The forgetful functor is important for our purposes because the free functor is loosely
defined as the adjoint to a forgetful functor. (We will shortly define what an adjoint pair of
functors is.) And as the name suggests, the functor 𝑆 ↦ Free(𝑆) : Set → Group is such a
free functor.

I have not yet specified how the free functor 𝑆 ↦ Free(𝑆) maps arrows in Set to arrows in
Group. There is a sensible definition which relies on Theorem 2.62: we send a function
𝑓 : 𝑋 → 𝑌  in Set to the unique homomorphism 𝜑 : Free(𝑋) → Free(𝑌 ) in Group such
that 𝜑 ↾ 𝑋 = 𝑓 .²² This homomorphism uniquely exists because we can easily extend
𝑓 : 𝑋 → 𝑌  to 𝑓 : 𝑋 → Free(𝑌 ) as 𝑌 ⊂ Free(𝑌 ).²³

id

𝑓
𝜑

𝑋 Free(𝑋)

Free(𝑌 )
Figure 5: Applying Theorem 2.62 shows that 𝜑 is unique.

Exercise 2.68.  Verify that the free functor 𝐹  is indeed a functor. More precisely, verify
that 𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑔) ∘ 𝐹(𝑓).

(Technically you also need to verify that 𝐹(id𝑆) = idFree(𝑆), but this is trivial.)

Now, as promised, we will formally introduce adjoint functors.

²²Technically this is an abuse of notation. Really, we are identifying an element 𝑓(𝑥) ∈ 𝑌  with the word
𝑦1 ∈ Free(𝑌 ). They are technically not the same thing, but you and I know they are basically equivalent.

²³Again, this is not exactly true. But it is close enough to true.
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Definition 2.69 (Adjoint Functors).  Functors 𝐹 : 𝒞 → 𝒟 and 𝐺 : 𝒟 → 𝒞 adjoint if
for each object 𝑐 in 𝒞, we may associate 𝑐 with an arrow 𝜂𝑐 : 𝑐 → 𝐺(𝐹(𝑐)) such that
for each object 𝑑 in 𝒟 and arrow 𝑓 : 𝑐 → 𝐺(𝑑), there exists a unique arrow
𝑔 : 𝐹(𝑐) → 𝑑 with 𝐺(𝑔) ∘ 𝜂𝑐 = 𝑓 .

𝜂𝑐

𝑓
𝐺(𝑔)

𝑐 𝐺(𝐹(𝑐))

𝐺(𝑑)
Figure 6: This diagram commutes when 𝐺 is right adjoint to 𝐹 .

Note that the statements “𝐹  and 𝐺 are adjoint” and “𝐺 and 𝐹  are adjoint” are different. In
other words, order matters. To that end, we will often refer to 𝐹  as the left adjoint and 𝐺
as the right adjoint.

Exercise 2.70.  Convince yourself the free functor 𝑆 ↦ Free(𝑆) : Set → Group and
forgetful functor 𝐺 ↦ 𝐺 : Group → Set are adjoint. (Hint: compare Figure 2 with
Figure 6.)

This definition of adjunction is woefully incomplete. There are two other equivalent
characterizations: the hom-set and counit definitions. But first we must develop the
concepts of natural transformations and hom-sets.

Definition 2.71 (Natural Transformation).  Given functors 𝐹, 𝐺 : 𝒞 → 𝒟, a
natural transformation 𝜂 : 𝐹 ⇒ 𝐺 assigns each object 𝑐 in 𝒞 an arrow
𝜂𝑐 : 𝐹 (𝑐) → 𝐺(𝑐) such that for each arrow 𝑓 : 𝑐1 → 𝑐2 in 𝒞,

𝜂𝑐2
∘ 𝐹(𝑓) = 𝐺(𝑓) ∘ 𝜂𝑐1

.

𝑓

𝜂𝑐1

𝐹(𝑓) 𝐺(𝑓)
𝜂𝑐2

𝑐1 𝐹(𝑐1) 𝐺(𝑐1)

𝑐2 𝐹(𝑐2) 𝐺(𝑐2)
Figure 7: Equivalently, this diagram commutes. The two different paths from 𝐹(𝑐1) to

𝐺(𝑐2) are marked with stylistically distinct arrows.

Let’s write out the domain and codomain of each arrow involved in the definition.
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• We compose 𝐹(𝑓) : 𝐹 (𝑐1) → 𝐹(𝑐2) and 𝜂𝑐2
: 𝐹 (𝑐2) → 𝐺(𝑐2) to get an arrow

𝜂𝑐2
∘ 𝐹(𝑓) : 𝐹 (𝑐1) → 𝐺(𝑐2).

• We compose 𝜂𝑐1
: 𝐹 (𝑐1) → 𝐺(𝑐1) and 𝐺(𝑓) : 𝐺(𝑐1) → 𝐺(𝑐2) to get an arrow

𝐺(𝑓) ∘ 𝜂𝑐1
: 𝐹 (𝑐1) → 𝐺(𝑐2).

Note every arrow involved in this condition is in 𝒟!

Just as a functor is not a category, a natural transformation is not a functor. Just as a functor
is a map between two categories, a natural transformation is a map between two functors.

Furthermore, we may compose natural transformations.

Definition 2.72 (Composition of Natural Transformations).  Given functors
𝐹, 𝐺, 𝐻 : 𝒞 → 𝒟 and natural transformations 𝜂 : 𝐹 ⇒ 𝐺 and 𝜀 : 𝐺 ⇒ 𝐻 , we define
𝜀 ∘ 𝜂 as the natural transformation where for each object 𝑐 in 𝒞,

(𝜀 ∘ 𝜂)𝑐 = 𝜀𝑐 ∘ 𝜂𝑐.

𝑓

𝜂𝑐1

𝐹(𝑓)

𝜀𝑐1

𝐺(𝑓) 𝐻(𝑓)
𝜂𝑐2

𝜀𝑐2

𝑐1 𝐹(𝑐1) 𝐺(𝑐1) 𝐻(𝑐1)

𝑐2 𝐹(𝑐2) 𝐺(𝑐2) 𝐻(𝑐2)
Figure 8: 𝜀 ∘ 𝜂 is a natural transformation as this diagram commutes for every arrow

𝑓 : 𝑐1 → 𝑐2 in 𝒞.

Of course, the analogy is not perfect. A functor maps things in 𝒞 to things in 𝒟. But there
are no “things” in a functor 𝐹  to map to another functor 𝐺. A natural transformation really
sends objects in 𝒞 to arrows in 𝒟, in a manner that respects the structures of functors 𝐹
and 𝐺.

Definition 2.69 was a slightly tortured definition. What was going on with 𝜂𝑐? It turns out
to be the arrow associated with 𝑐 is a natural transformation from 𝐹  to 𝐺. Now we may
rewrite it using the language of natural transformations to get a more natural definition.

Definition 2.73 (Adjoint Functors).  Functors 𝐹 : 𝒞 → 𝒟 and 𝐺 : 𝒟 → 𝒞 are
adjoint if there is a natural transformation 𝜂 : id𝒞 ⇒ 𝐺 ∘ 𝐹  such that for each object 𝑑
in 𝒟 and arrow 𝑓 : 𝑐 → 𝐺(𝑑), there exists a unique arrow 𝑔 : 𝐹(𝑐) → 𝑑 with
𝐺(𝑔) ∘ 𝜂𝑐 = 𝑓 .

Note both functors in the natural transformation 𝜂 are 𝒞 → 𝒞.

A trivial example of a natural transformation is id𝐹 : 𝐹 ⇒ 𝐹 , where each object 𝑐 in 𝒞 is
assigned to the arrow id𝐹(𝑐) in 𝒟. In fact, it is the one that shows the forgetful functor on
groups is right adjoint to the free functor taking 𝑆 ↦ Free(𝑆).
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Exercise 2.74.  As you might expect, id𝐹  is the identity when it comes to composition
of natural transformations. Verify that given functors 𝐹, 𝐺 : 𝒞 → 𝒟 and natural
transformation 𝜂 : 𝐹 ⇒ 𝐺,

𝜂 ∘ id𝐹 = 𝜂 = id𝐺 ∘ 𝜂.

Definition 2.75 (Hom-Set).  In a category 𝒞 with objects 𝑐1 and 𝑐2, the hom-set
Hom𝒞(𝑐1, 𝑐2) is the class of arrows in 𝒞 from 𝑐1 to 𝑐2.

The collection of arrows from 𝑐 to 𝑑 is not necessarily a set. However, to simplify matters
we will assume this collection is a set from now on. In other words, whenever we say the
phrase hom-set, we only consider categories where the collection of arrows between any
two objects is a set.

We may also consider the act of taking a hom-set as a functor. More precisely, we fix 𝑐2 and
vary 𝑐1.

Definition 2.76 (Hom-functor).  Given a category 𝒞 with object 𝑐1, the hom-
functor Hom𝒞(𝑐1, −) : 𝒞 → Set is the functor that sends objects 𝑐2 to Hom𝒞(𝑐1, 𝑐2)
and arrows 𝑓 : 𝑥 → 𝑦 to the function 𝑔 ↦ 𝑔 ∘ 𝑓 .

Similarly, the hom-functor Hom𝒞(−, 𝑐2) sends objects 𝑐1 to Hom𝒞(𝑐1, 𝑐2) and
arrows ℎ : 𝑥 → 𝑦 to the function ℎ ↦ ℎ ∘ 𝑔.

Convince yourself that 𝑔 ↦ 𝑔 ∘ 𝑓  is indeed an arrow between Hom𝒞(𝑐1, 𝑥) and
Hom𝒞(𝑐1, 𝑦). This is because every arrow 𝑔 ∈ Hom𝒞(𝑐1, 𝑥), i.e. every arrow 𝑔 : 𝑐1 → 𝑥, is
sent to 𝑔 ∘ 𝑓 : 𝑐1 → 𝑦, which by definition is in Hom𝒞(𝑐1, 𝑦).

Similarly convince yourself that ℎ ↦ ℎ ∘ 𝑔 is an arrow between Hom𝒞(𝑥, 𝑐2) and
Hom𝒞(𝑦, 𝑐2).

Looking at the hom-functor another way, given an arrow 𝑓 : 𝑥 → 𝑦, we want to use 𝑓  to
send an arbitrary arrow 𝑔 : 𝑐1 → 𝑥 to another arrow of type 𝑐1 → 𝑦. There is only one
formulaic way to do this: take 𝑔 ∘ 𝑓 .

But what if we varied both 𝑐1 and 𝑐2 at once? What would the functor Hom𝒞(−, −) look
like? It is very obvious what such a hypothetical functor would do to an object (𝑐1, 𝑐2). But
what would it do to an arrow

(𝑓 : 𝑐1 → 𝑐1′, ℎ : 𝑐2 → 𝑐2′)?

We want Hom𝒞(−, −) to take (𝑓, ℎ) to a function that sends arrows 𝑐1 → 𝑐2 to arrows
𝑐1′ → 𝑐2′. Now look at the following commutative diagram.
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𝑔

𝑓 ℎ

𝑐1 𝑐2

𝑐1′ 𝑐2′
Figure 9: Given arrows 𝑓 : 𝑐1 → 𝑐1′ and ℎ : 𝑐2 → 𝑐2′, for every arrow 𝑔 : 𝑐1 → 𝑐2, this

diagram commutes.

It would be great if we could somehow reverse the direction of 𝑓  to get 𝑓op : 𝑐1′ → 𝑐1. Then
the arrow ℎ ∘ 𝑔 ∘ 𝑓op : 𝑐1′ → 𝑐2′ is how we formulaically construct an arrow of type
𝑐1′ → 𝑐2′ for any 𝑔 : 𝑐1 → 𝑐2. But we can do exactly this by considering 𝑓op as an arrow in
𝒞op. Hopefully it will now make sense when the hom-bifunctor is defined to be of type
𝒞op × 𝒞 → Set.

Definition 2.77 (Hom-Bifunctor).  The hom-bifunctor
Hom𝒞(−, −) : 𝒞op × 𝒞 → Set maps arrows (𝑓op, ℎ) to the function 𝑔 ↦ ℎ ∘ 𝑔 ∘ 𝑓op.

Hom𝒞(ℎ, 𝑐2)

Hom𝒞(𝑐1, 𝑓op) Hom𝒞(𝑐1′, 𝑓op)

Hom𝒞(ℎ, 𝑐2′)

Hom𝒞(𝑐1, 𝑐2) Hom𝒞(𝑐1′, 𝑐2)

Hom𝒞(𝑐1, 𝑐2′) Hom𝒞(𝑐1′, 𝑐2′)
Figure 10: Given objects 𝑐1, 𝑐2, 𝑐1′, 𝑐2′ in 𝒞 and functions 𝑓op : 𝑐2′ → 𝑐2, ℎ : 𝑐1′ → 𝑐1,

this diagram of hom-functors commutes. Both paths send 𝑔 : 𝑐1 → 𝑐2 to
𝑓 ∘ 𝑔 ∘ ℎ : 𝑐1′ → 𝑐2′.

Now we are ready to provide a more complete characterization of adjoint functors.
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Theorem 2.78 (Characterizations of Adjoint Functors).  Functors 𝐹 : 𝒞 → 𝒟 and
𝐺 : 𝒟 → 𝒞 are adjoint if they satisfy any of the following equivalent conditions:

1. Definition 2.73;
2. for any objects 𝑐 in 𝒞 and 𝑑 in 𝒟, there is an isomorphism

𝜑 : Hom𝒟(𝐹(𝑐), 𝑑) ≅ Hom𝒞(𝑐, 𝐺(𝑑))

that is natural in both 𝑐 and 𝑑;
3. there exist natural transformations 𝜂 : 𝐹 ∘ 𝐺 ⇒ id𝒞 and 𝜀 : id𝒟 ⇒ 𝐺 ∘ 𝐹  such

that for each object 𝑐 in 𝒞 and 𝑑 in 𝒟,

id𝐹(𝑐) = 𝜂𝐹(𝑐) ∘ 𝐹(𝜀𝑐)

id𝐺(𝑑) = 𝐺(𝜂𝑑) ∘ 𝜀𝐺(𝑑).

We omit the proof of Theorem 2.78 because it is somewhat technical. Furthermore, we only
mention the final definition, also known as the counit-unit definition, for the sake of
completeness.

Let’s look at the second condition a little more closely. Where are the functors in our
natural transformation? What does “natural in both 𝑐 and 𝑑” mean? There is a lot of hidden
complexity in that statement.

Here we consider Hom𝒞(−, 𝐺(−)) as a functor from 𝒞op × 𝒟 to Set, and likewise we
consider Hom𝒟(𝐹(−), −) as a functor with the same source and target categories.²⁴ These
functors behave similarly to the hom-bifunctor.

𝜑(𝑓)

Hom𝒟(𝐹(𝑓op), 𝑑) Hom𝒞(𝑓op, 𝐺(𝑑))

𝜑(𝑓)

Hom𝒟(𝐹(𝑐), 𝑑) Hom𝒞(𝑐, 𝐺(𝑑))

Hom𝒟(𝐹(𝑐′), 𝑑) Hom𝒞(𝑐′, 𝐺(𝑑))
Figure 11:  Naturality in 𝑐 means that for any 𝑓op : 𝑐′ → 𝑐 and ℎ : 𝐹(𝑐) → 𝑑, this diagram

commutes.²⁵ Naturality in 𝑑 is similar. (Compare this diagram with Figure 10.)

²⁴A functor sends objects or arrows from the source category to the target category.
²⁵For clarity about typechecking, through Hom𝒟(−, 𝑑) the arrow 𝐹(𝑓op) : 𝐹 (𝑐′) → 𝐹(𝑐) sends each

arrow 𝑔 : 𝐹(𝑐) → 𝑑 to the arrow 𝑔 ∘ 𝐹(𝑓op) of type 𝐹(𝑐′) → 𝑑.
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Exercise 2.79.  Show that Definition 2.73 implies the hom-set characterization in
Theorem 2.78 by taking 𝜑(𝑔) = 𝐺(𝑔) ∘ 𝜂𝑐 and showing this 𝜑 makes Figure 11
commute.

We have spent a lot of effort to characterize adjoint functors, all of which begs the question:
what really is a pair of adjoint functors? I will shamelessly copy the example in https://
mathoverflow.net/a/51659.

Consider the category ℚ with a single arrow 𝑥 → 𝑦 when 𝑥 ≤ 𝑦, the subcategory ℤ,
and the inclusion functor id : ℤ → ℚ. Then consider the floor functor ⌊−⌋ : ℚ → ℤ
which takes an arrow 𝑝 → 𝑞 in ℝ to the arrow ⌊𝑝⌋ → ⌊𝑞⌋ in ℤ, and similarly define the
ceiling functor ⌈−⌉.

Then
• ⌈−⌉ and id are adjoint;
• id and ⌊−⌋ are adjoint.

Clearly ⌈−⌉ and ⌊−⌋ are approximations of rational numbers. So in some sense, adjoints can
be considered as a “best available approximation”. For instance, the forgetful functor from
Group to Set (which you may recall is adjoint with the free functor) is similarly the best
approximation of a group as a set.

Finally, we tie adjoint functors back to where we started from: universal properties. Note
that in Definition 2.69, for each 𝑐 in 𝒞 we can find some 𝜂𝑐 such that the universal property
is satisfied. (Here we use “universal property” somewhat informally.) Being able to find such
an 𝜂𝑐 for each 𝑐, in other words, being able to satisfy the universal property for each 𝑐, is
precisely what it means for two functors to be adjoint.

2.8.5 On the feasibility of using presentations

Group presentations are not a catch-all solution for describing every group. In an arbitrary
presentation, the computational problem of determining whether two group elements are
equivalent turns out to be generally undecidable.

So what use do group presentations have, besides just being a convenient way to describe
certain groups? Why bother inventing all this complicated machinery?²⁶ I confess I do not
know the answer, so I have asked Professor Cummings. Here are his insights:

They are a basic idea in geometric group theory where you take a generating set and
cook up an object called the Cayley Graph on which the group will then act in a
natural (and very revealing) way. For example, the growth rate counts the rate at which
the number of elements writable as a product of 𝑛 generators goes up with 𝑛 and is a
very useful invariant of the group.

²⁶Free groups and presentations are fairly complex, even if you completely ignore the category theoretic
connections. I have left out a lot of the details.
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Chapter 3

Rings

We know (ℤ/𝑛ℤ, +) forms a group. But many times we will want to study (ℤ/𝑛ℤ, +, ×),
especially in the realm of cryptography. We can generalize the study of ℤ/𝑛ℤ to the study
of rings. In particular, we will focus on unital commutative rings, which ℤ/𝑛ℤ is the
perfect example of. Furthermore, given a field 𝐹 , we may study the ring of polynomials
𝐹[𝑥] — the polynomials whose coefficients are in 𝐹  — and this study will give us valuable
information for the study of field theory.

Definition 3.1 (Ring).  A ring is a triple (𝑅, +, ×) where + and × are associative
binary functions of the form 𝑅 × 𝑅 → 𝑅 that satisfy the following properties:

• (𝑅, +) forms an abelian group.
• Addition distributes over multiplication: (𝑎 + 𝑏) × 𝑐 = (𝑎 × 𝑐) + (𝑏 × 𝑐).
• Multiplication distributes over addition: 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Notes about notation: we will usually drop the × operator and implicitly perform × before
+, just as in regular arithmetic. Also, we will denote the identity of the group (𝑅, +) as 0
instead of id from now on. We usually refer to the ring just as 𝑅 when it is clear what the
additive and multiplicative operator are.

We say 𝑅 is commutative if × is commutative, and we say 𝑅 is unital if there is some
element 1 ∈ 𝑅 such that 1 × 𝑎 = 𝑎 × 1 = 𝑎 for all 𝑎 ∈ 𝑅 — in other words, if there is a
multiplicative identity.

Furthermore, we say that an element 𝑢 of a unital ring 𝑅 is a unit if and only if it is
invertible. In other words, 𝑢 is a unit precisely when there exists some 𝑣 ∈ 𝑅 such that
𝑢𝑣 = 1.

Exercise 3.2.  If ring 𝑅 has an identity element 1, show that it is unique.

Exercise 3.3.  If 𝑢𝑣 = 1, show that 𝑣𝑢 = 1 as well.

Exercise 3.4.  Show that the units of a ring 𝑅 form a group under ring multiplication.

Here are some examples of rings:

• If you know anything about fields, note that a field is a unital commutative ring where
every element has a multiplicative inverse.

• ℤ, ℚ, ℝ, and ℂ. In particular note that ℤ is not a field.
• ℤ/𝑛ℤ.
• 2ℤ, the set of even integers, which is commutative but not unital.
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• 𝐺𝐿𝑛, the set of 𝑛 × 𝑛 matrices with non-zero determinant. This is a unital ring — in
fact, every matrix has a multiplicative inverse — but it is not commutative.

We may also define a subring the same way we defined a subgroup.

Definition 3.5 (Subring).  A subring 𝑆 of 𝑅 is any subset of 𝑅 closed under + and ×.
We write 𝑆 ≤ 𝑅.

Similarly, 𝑆 (with + and ×) can be considered a ring in its own right. We may also define 𝑆-
cosets under the group (𝑅, +), and each coset can be denoted as 𝑟 + 𝑆 for some 𝑟 ∈ 𝑅.

Subgroups preserve their identity: the identity element in 𝐻 ≤ 𝐺 is the same as the identity
element in 𝐺. So the additive identity of subrings is obviously preserved as well. But the
multiplicative identity does not behave so nicely.

Example 3.6 (Subrings do not preserve multiplicative identity).  The
multiplicative identity of ℤ2 is (1, 1). Yet the multiplicative identity of the subring
{(𝑧, 0) | 𝑧 ∈ ℤ} is (1, 0).

It is an important fact in number theory that if 𝑎 × 𝑏 = 0 for integers 𝑎 and 𝑏, then one of 𝑎
and 𝑏 must be 0. Furthermore ℤ is a unital commutative ring. This motivates the following
definition.

Definition 3.7 (Integral Domain).  A unital commutative ring 𝑅 is an integral
domain if 𝑎𝑏 = 0 implies one of 𝑎, 𝑏 are 0. In other words, if 𝑎, 𝑏 ≠ 0, then 𝑎𝑏 ≠ 0.

Note finite integral domains are fields as 𝑥 ↦ 𝑎 ⋅ 𝑥 is an injective function, so there must be
some 𝑎−1 that is sent to 1 under this function, proving the existence of an inverse for 𝑎.

3.1 Homomorphisms and Isomorphisms

In every ring there is an underlying group. So the concepts of a homomorphism and
quotient ring can be naturally defined, and furthermore, natural equivalents of the
Isomorphism Theorems hold.

Definition 3.8 (Homomorphism).  A homomorphism 𝜑 : 𝑅 → 𝑆 (where 𝑅 and 𝑆
are rings) is a function where

𝜑(𝑟1 + 𝑟2) = 𝜑(𝑟1) + 𝜑(𝑟2) and 𝜑(𝑟1𝑟2) = 𝜑(𝑟1)𝜑(𝑟2)

for all 𝑟1, 𝑟2 ∈ 𝑅.

A ring isomorphism is exactly what you think it is. And ring isomorphism is also an
equivalence relation.
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There is a small caveat. When 𝑅 and 𝑆 are unital, other texts usually require that
𝜑(1𝑅) = 1𝑆 . However, we do not require this because it frankly makes no difference to
either of our lives. A few discussions are simplified by dropping this requirement.

Exercise 3.9.  And importantly, if 𝑅 and 𝑆 are unital and 𝜑 is an isomorphism, then
we must have 𝜑(1𝑅) = 1𝑆 . Prove this.

Exercise 3.10.  If 𝜑 : 𝑅 → 𝑆 is a homomorphism, prove that ker 𝜑 ≤ 𝑅 and im 𝜑 ≤ 𝑆.
(In particular, I am asking you to show that ker 𝜑 and im 𝜑 are subrings.) Furthermore,
note that for every 𝑎 ∈ ker 𝜑 and 𝑟 ∈ 𝑅, 𝑎𝑟, 𝑟𝑎 ∈ ker 𝜑, i.e. ker 𝜑 is closed under
multiplication by 𝑅.

In group theory, we’ve studied groups of the form 𝐺
ker 𝜑 . We are going to do the same here:

study rings of the form 𝑅
ker 𝜑 . Now here is the kicker: we have representation invariance if

we define ker 𝜑-coset addition and multiplication as

• (𝑟1 + ker 𝜑) + (𝑟2 + ker 𝜑) = (𝑟1 + 𝑟2) + ker 𝜑
• (𝑟1 + ker 𝜑)(𝑟2 + ker 𝜑) = (𝑟1𝑟2) + ker 𝜑,

respectively. Addition is representation invariant as ker 𝜑 is a normal subgroup of (𝑅, +).
In fact, addition is representation invariant under any subring as any subring is a normal
subgroup of the abelian group (𝑅, +).

The real sticking point is multiplication. Multiplication is representation invariant as for all
𝑎, 𝑏 ∈ ker 𝜑,

(𝑟1 + 𝑎)(𝑟2 + 𝑏) + ker 𝜑 = 𝑟1𝑟2 + 𝑎𝑟1 + 𝑏𝑟2 + 𝑎𝑏 + ker 𝜑 = 𝑟1𝑟2 ker 𝜑,

as 𝑎𝑟1, 𝑏𝑟2, and 𝑎𝑏 are all in ker 𝜑. (Recall for the first two that ker 𝜑 is closed under
multiplication by 𝑅.)

So now we can in good faith consider the quotient ring 𝑅
ker 𝜑 . The question now is, for

which subrings 𝐼  can we consider this quotient ring? Precisely the ones with representation
invariance. It turns out that it is exactly when 𝐼  is closed under multiplication by 𝑅.

Definition 3.11 (Ideal).  Given a subring 𝐼  of 𝑅, we say 𝐼  is an ideal if any of the
following equivalent properties are satisfied:

1. 𝐼 = ker 𝜑 for some homomorphism 𝑅 → 𝑆. (We don’t really care what 𝑆 is.)
2. 𝐼  is representation invariant under multiplication.
3. 𝐼  is closed under multiplication by 𝑅, that is, for each 𝑎 ∈ 𝐼  and 𝑟 ∈ 𝑅, we have

𝑎𝑟, 𝑟𝑎 ∈ 𝐼  as well.

We have conversationally shown that (1) ⟹ (3) ⟹ (2) and (1) ⟹ (3). To see that
(2) ⟹ (3), note that representation invariance implies

0𝑟 + 𝐼 = 𝑎𝑟 + 𝐼
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for all 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐼 , which means 𝑎𝑟 ∈ 𝐼  a desired.¹

And to see that (3) ⟹ (1), simply take the homomorphism 𝜑 : 𝑅 → 𝑅
𝐼  where

𝜑 : 𝑟 ↦ 𝑟 + 𝐼 . We know 𝑅𝐼  is well-defined as (3) ⟹ (2). So these conditions really are
equivalent.

The isomorphism theorems are precisely what you think they are:

1. If 𝜑 : 𝑅 → 𝑆 is a homomorphism, then 𝑅
ker 𝜑 ≅ im 𝜑.

2. If 𝐼 , 𝑆 ≤ 𝑅 and 𝐼  is an ideal of 𝑅, then 𝐼+𝑆
𝐼 ≅ 𝑆

𝐼∩𝑆 .
3. If 𝐼  and 𝐽  are ideals of 𝑅 with 𝐼 ≤ 𝐽 , then 𝐽𝐼  is an ideal of 𝑅𝐼  and

𝑅
𝐼
𝐽
𝐼

≅ 𝑅
𝐽

.

4. If 𝐼  is an ideal of 𝑅, then there is an inclusion-preserving bijection between the 𝐴
where 𝐼 ≤ 𝐴 ≤ 𝑅 and the subrings of 𝑅𝐼 . Furthermore, if 𝐴 and 𝐵𝐼  are associated with
each other, then

𝐴 is an ideal of 𝑅 ⟺ 𝐵
𝐼

is an ideal of 𝑅
𝐼

.

The proofs are nearly identical to those of the Isomorphism Theorems with groups, only
with a little bit more work to take care of multiplication.

3.1.1 Special Ideals

Just as we may generate the smallest subgroup containing a set by repeatedly applying the
group operation, we may generate the smallest ideal containing a set by repeatedly applying
+ (to elements in the ideal) and × (to an element in the ideal and an element of 𝑅). For any
𝑋 ⊆ 𝑅, we denote the smallest ideal containing 𝑋 as (𝑋).

There is a particular type of ideal we care about: those generated by a single element, i.e.
those of the form (𝑎) for some 𝑎 ∈ 𝑅. We call these ideals principal.

Exercise 3.12.  Consider principal ideals (𝑎) and (𝑏). Show (𝑎) ≤ (𝑏) if and only if
there exists some 𝑟 ∈ 𝑅 such that 𝑎 = 𝑟𝑏.

Now we begin focusing mostly on unital commutative rings. An ideal 𝐼  is maximal if
𝐼 ≠ 𝑅 and there is no ideal 𝐽  between 𝐼  and 𝑅, i.e. 𝐼 < 𝐽 < 𝑅. Maximal ideals are
important because (among other reasons), every field is isomorphic to some quotient ring 𝑅𝐼
where 𝑅 is commutative and 𝐼  is maximal.

Theorem 3.13.  Suppose 𝑅 is unital and commutative and 𝐼  is an ideal of 𝑅. Then 𝐼  is
maximal if and only if 𝑅𝐼  is a field.

¹To be explicit, we are using the alternative representation of 0 as 𝑎 in our proof.
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Proof of Theorem 3.13.  Suppose 𝐼  is maximal. Then 𝑅𝐼  has no interesting ideals by
Fourth Isomorphism, meaning for every non-zero 𝑎 ∈ 𝑅

𝐼 , (𝑎) = 𝑅
𝐼 . Since 1 ∈ 𝑅

𝐼 , 𝑎 must
be a unit.

Suppose 𝑅𝐼  is a field. It has no interesting ideals because for all ideals 𝐽  of 𝑅𝐼 , if
𝑎 ≠ 0 ∈ 𝐽 , then 𝑎−1𝑎 = 1 ∈ 𝐽 , implying 𝐽 = 𝑅

𝐼 . □

So it would perfectly fair to characterize fields as “quotients of maximal ideals” for they are
one and the same.

It is also worth noting that not every ring has a maximal ideal. Consider (ℚ, +, 𝑞1𝑞2 ↦ 0),
i.e. the ring on ℚ whose multiplicative operation sends everything to 0. (This is a valid
ring!) Evidently all of its ideals are just the subgroups of ℚ. Now we recall Exercise 2.6 and
conclude this ring has no maximal ideals.

However, every unital ring has a maximal ideal. And in fact, every proper subgroup of a
unital ring is contained in some maximal ideal.

Finally we discuss prime ideals. Given a unital commutative ring 𝑅, we say 𝐼 ≠ 𝑅 is a
prime ideal if for all 𝑎, 𝑏 ∈ 𝑅,

𝑎𝑏 ∈ 𝐼 ⟹ one of 𝑎, 𝑏 ∈ 𝐼.

This definition is natural because

𝑝 prime ⟺ 𝑝ℤ is a prime ideal of ℤ.

(Prove this yourself! It is very easy.)

Furthermore, for any unital commutative ring 𝑅,

𝐼 prime ⟺ 𝑅
𝐼

is an integral domain.

Finally we may note that in a unital commutative ring every maximal ideal 𝐼  is prime.
For 𝑅𝐼  is a field, which necessarily is an integral domain, implying 𝐼  is prime.

3.1.2 Product of Ideals

There is a notion of the product of two ideals. The naive way to define the product of ideals
𝐼  and 𝐽  is {𝑎𝑏 : 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽}. However, to ensure closure under addition, we define the
product 𝐼𝐽  as the ideal generated by the set {𝑎𝑏 : 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽}. It turns out that this ideal
is equivalent to the set generated by all finite sums of the form

{∑
𝑛

𝑘=1
𝑎𝑘𝑏𝑘 : 𝑎𝑘 ∈ 𝐼, 𝑏𝑘 ∈ 𝐽}.

(This is worth verifying yourself.)

Furthermore, we may define the product of many ideals 𝐼1, …, 𝐼𝑛 recursively: it is equal to
the product of 𝐼1, …, 𝐼𝑛−1 and 𝐼𝑛. Luckily, this definition of ideal multiplication ends up
being associative (a fact we will not prove).
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3.2 The Chinese Remainder Theorem

In this section we work with unital commutative rings.

Consider the ring 𝑅 = ℤ/30ℤ. Note that 𝐼 = 2ℤ/30ℤ and 𝐽 = 3ℤ/30ℤ are both ideals of 𝑅
not equal to 𝑅. Furthermore, neither 𝐼  nor 𝐽  are maximal. But because 2 and 3 are coprime,
every element in 𝑅 can be expressed in the form 𝑎 + 𝑏 : 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽 . In other words,
𝑅 = 𝐼 + 𝐽 .

This idea of ideals that sum to 𝑅 can be generalized.

Definition 3.14 (Coprime Ideals).  Ideals 𝐼  and 𝐽  of 𝑅 are coprime if and only if
𝐼 + 𝐽 = 𝑅.

This generalizes the idea that 2 and 3 are coprime in ℤ.

Theorem 3.15 (Chinese Remainder Theorem: Two Ideals).  If 𝐼  and 𝐽  are coprime
ideals in 𝑅, then

• 𝐼 ∩ 𝐽 = 𝐼𝐽 ,
• 𝑅

𝐼∩𝐽 ≅ 𝑅
𝐼 × 𝑅

𝐽 .

Proof of Theorem 3.15.  Note by definition that 1 = 𝑎 + 𝑏 for some 𝑎 ∈ 𝐼  and 𝑏 ∈ 𝐽 .
• For any arbitrary ring and ideals, 𝐼𝐽 ⊆ 𝐼 ∩ 𝐽  as ideals are closed under

multiplication. If we multiply 𝑎 ∈ 𝐼  with 𝑏 ∈ 𝐽 , then the result 𝑎𝑏 is in both 𝐼  and
𝐽 . Now if 𝑟 ∈ 𝐼 ∩ 𝐽 , note

𝑟 = 𝑟(𝑎 + 𝑏) = 𝑟𝑎 + 𝑟𝑏 ∈ 𝐼𝐽

as 𝑟𝑎 ∈ 𝐼𝐽  (because 𝑎 ∈ 𝐼  and 𝑟 ∈ 𝐽 ) and likewise 𝑟𝑏 ∈ 𝐼𝐽 .
• Consider the ring homomorphism 𝜑 : 𝑅 ⟶ 𝑅

𝐼 × 𝑅
𝐽  where 𝜑 : 𝑟 ↦ (𝑟 + 𝐼, 𝑟 + 𝐽).

Note ker 𝜑 = 𝐼 ∩ 𝐽  and im 𝜑 = 𝑅
𝐼 × 𝑅

𝐽  as

𝜑(𝑟𝑎 + 𝑠𝑏) = (𝑟𝑏 + 𝐼, 𝑠𝑎 + 𝐽) = (𝑟𝑎 + 𝑟𝑏 + 𝐼, 𝑠𝑎 + 𝑠𝑏 + 𝐽) = (𝑟 + 𝐼, 𝑠 + 𝐽).

Applying the First Isomorphism Theorem finishes.

□

It may be worth reasoning through the Chinese Remainder Theorem with the example of
ℤ/30ℤ, 2ℤ/30ℤ, and 3ℤ/30ℤ we started with.

Theorem 3.16 (Chinese Remainder Theorem).  If 𝐼1, …, 𝐼𝑛 are coprime ideals in 𝑅,
then

• 𝐼1 ∩ … ∩ 𝐼𝑛 = 𝐼1…𝐼𝑛,
• 𝑅

𝐼1∩…∩𝐼𝑛
≅ 𝑅

𝐼1
× … × 𝑅

𝐼𝑛
.
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Proof of Theorem 3.16.  We’ve already put in the legwork to prove this theorem.
• Trivial by induction and the first part of Theorem 3.15.
• Identical to the second part of Theorem 3.15.

□

In particular, this implies the familiar Chinese Remainder Theorem in ℤ: if 𝑎1, …, 𝑎𝑛 are
pairwise coprime positive integers, then determining some integer 𝑎 modulo 𝑎1, …, 𝑎𝑛
uniquely determines 𝑎 modulo 𝑎1…𝑎𝑛, and vice versa.

3.3 Domains

Every ring we work with here is an integral domain. That is, they are unital
commutative rings, and if 𝑎, 𝑏 ≠ 0, then 𝑎𝑏 ≠ 0.

There are certain properties of rings that do not hold for all rings but do hold for many
rings of interest. As an example, in the ring of integers ℤ and the ring of complex
polynomials ℂ[𝑥], we may apply the Euclidean Algorithm. Furthermore we can uniquely
factorize integers into primes and complex polynomials into irreducible (i.e. linear) factors.
Instead of concretely studying these rings, however, we will be studying these properties in
the abstract.

The three classes of rings of interest are Euclidean Domains, Principal Ideal Domains,
and Unique Factorization Domains. We will define what they are shortly, but one of the
main takeaways of this section is that

ED ⟹ PID ⟹ UFD,

or equivalently,

ED ⊂ PID ⊂ UFD.

That is, given a ring that is a Euclidean Domain, we will see it must be a Principal Ideal
Domain and thus a Unique Factorization Domain.

3.3.1 Euclidean Domains

To define a Euclidean Domain we first must define a notion of a norm on a ring. This notion
is quite loose.

Definition 3.17 (Norm).  A norm |−| on a ring 𝑅 is a function |−| : 𝑅 → ℕ where
|0| = 0. If |𝑟| = 0 ⟹ 𝑟 = 0 then |−| is a positive norm.

Note ℤ and 𝐹[𝑥] (i.e. the ring of polynomials under any field 𝐹 ) are both Euclidean
Domains. For ℤ the norm is simply the absolute value function, and for 𝐹[𝑥] the norm is the
degree of the polynomial.²

²This is not precisely true. The degree of a constant non-zero polynomial is 0, but the degree of the 0
polynomial is actually −∞. But for the purposes of showing it is a Euclidean Domain, we set its norm to be
0 instead.
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Definition 3.18 (Euclidean Domain).  A ring 𝑅 is a Euclidean Domain if and only if
there exists a norm |−| where for all 𝑎, 𝑏 ∈ 𝑅, there exists some 𝑞, 𝑟 ∈ 𝑅 such that

• 𝑎 = 𝑞𝑏 + 𝑟,
• 𝑟 = 0 or |𝑟| < |𝑏|.

Unlike the Euclidean Algorithm on polynomials, there is no guarantee that 𝑞 and 𝑟 are
unique for a general Euclidean Domain. As a stupid example, note that 10 = 3 ⋅ 3 + 1 and
10 = 4 ⋅ 3 − 2. Since |1| < |3| and |−2| < |3|, we have two distinct quotient-remainder
pairs.

3.3.2 Greatest Common Divisors

The whole point of the Euclidean Algorithm on integers is that it generates their greatest
common divisor. The Euclidean Algorithm also turns out to work for arbitrary Euclidean
Domains, but first we must define what divisibility and greatest common divisors are.

Definition 3.19 (Divisibility).  For 𝑎, 𝑏 ∈ 𝑅, we say 𝑎 ∣ 𝑏 if and only if there exists
some 𝑟 ∈ 𝑅 such that 𝑏 = 𝑎𝑟.

Note that 𝑎 ∣ 𝑏 ⟺ 𝑏 ∈ (𝑎) ⟺ (𝑏) ≤ (𝑎).³ So we may translate the language of divisibility
into the language of ideals (and vice versa) quite easily.

Definition 3.20 (Greatest Common Divisor).  A greatest common divisor of
𝑎, 𝑏 ∈ 𝑅 is some 𝑑 such that

• 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏,
• 𝑑′ ∣ 𝑎 and 𝑑′ ∣ 𝑏 implies 𝑑′ ∣ 𝑑.

Let me be very clear here. Not every pair of elements in any ring has a greatest
common divisor. Obviously the pair (0, 0) does not have a greatest common divisor. And
in the ring of even integers, 6 does not even have any divisors, so the pair (6, 2𝑛) never has
a greatest common divisor. And there are integral domains with a non-trivial pair of
elements without a greatest common divisor, an example of which you may find at
Wikipedia: https://en.wikipedia.org/wiki/Greatest_common_divisor#In_commutative_rings.

But every pair of elements (𝑎, 𝑏) ≠ (0, 0) in a Euclidean Domain, Principal Ideal Domain, or
Unique Factorization Domain has a greatest common divisor. We will prove this for
Euclidean Domains, and I encourage you to prove them yourself for Principal Ideal Domains
and Unique Factorization Domains once you have learned what they are. It is not too hard.

When they do exist, greatest common divisors are almost unique in a sense. By reframing
divisibility in terms of ideals, we can see that if 𝑑 and 𝑑′ are both greatest common divisors

³Recall (𝑎) denotes the principal ideal generated solely by the element 𝑎. Similarly for (𝑏).
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of 𝑎 and 𝑏, then (𝑑) = (𝑑′). This implies that 𝑑′ = 𝑢𝑑 where 𝑢 is a unit. So greatest common
divisors are unique up to multiplication by units.

Conversely, if 𝑑 is a greatest common divisor of 𝑎 and 𝑏 and 𝑢 is a unit, then 𝑢𝑑 is also a
greatest common divisor of 𝑎 and 𝑏. This establishes a bidirectional relationship.

For the sake of completeness we will now describe the Euclidean Algorithm on a Euclidean
Domain 𝑅. It is an algorithm that takes in two ring elements and returns a ring element.

• We start with two ring elements 𝑎 and 𝑏.
• If 𝑎 ∣ 𝑏, then return 𝑎. Similarly, if 𝑏 ∣ 𝑎, return 𝑏. (If both 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, then pick

whichever of 𝑎 or 𝑏 you want.)
• Pick whichever of 𝑎 and 𝑏 has the smallest norm; without loss of generality say that

|𝑎| ≥ |𝑏|. Then find some 𝑟 such that 𝑎 = 𝑞𝑏 + 𝑟 and |𝑟| < |𝑏| and replace 𝑎 with 𝑟. (If it
is the case that |𝑎| < |𝑏|, then swap the roles of 𝑎 and 𝑏.)

Theorem 3.21.  If 𝑎 and 𝑏 are elements of a Euclidean Domain 𝑅 where at least one of
𝑎 and 𝑏 are non-zero, and the Euclidean Algorithm on 𝑎 and 𝑏 returns 𝑑, then

• 𝑑 is a greatest common divisor of 𝑎 and 𝑏,
• The ideal generated by 𝑑 is equivalent to the ideal generated by 𝑎 and 𝑏. In other

words, (𝑑) = (𝑎, 𝑏).

Of course, Theorem 3.21 implies that every pair of elements except (0, 0) in a Euclidean
Domain has a greatest common divisor: we have just described a process to construct one,
after all!

Proof of Theorem 3.21.  Completely trivial by induction on the number of steps the
Euclidean Algorithm takes.

Suppose |𝑎| ≥ |𝑏| and 𝑎 = 𝑞𝑏 + 𝑟. By the inductive hypothesis 𝑑 divides 𝑟 and 𝑏, so it
also must divide 𝑎. Similarly, if some 𝑑′ were to divide 𝑎 and 𝑏, then it must divide 𝑟
and 𝑏. But then it must divide 𝑑, meaning 𝑑 is a greatest common divisor.

Further note that (𝑑) = (𝑟, 𝑏) by the inductive hypothesis. Obviously
(𝑟, 𝑏) = (𝑞𝑏 + 𝑟, 𝑏). □

3.3.3 Principal Ideal Domains

Recall the definition of a principal ideal: an ideal that may be generated by exactly one
element. In other words, a principal ideal (𝑎) is of the form

{𝑎𝑟 : 𝑟 ∈ 𝑅}

For reasons we will soon see, it is very convenient if every ideal of a ring is principal. So this
motivates defining Principal Ideal Domains as those such rings.

Theorem 3.22.  Every Euclidean Domain is a Principal Ideal Domain.
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Proof of Theorem 3.22.  Suppose 𝐼  is a non-zero⁴ ideal of 𝑅. Then take some 𝑏 ∈ 𝐼  where
|𝑏| is minimal (there may be multiple such 𝑏, take any). Then for any 𝑎 ∈ 𝐼 , we may
write

𝑎 = 𝑞𝑏 + 𝑟

where 𝑟 = 0 or |𝑟| < |𝑏|. But since |𝑏| is minimal we cannot have |𝑟| < |𝑏| and must
have 𝑟 = 0. Thus 𝑏 ∣ 𝑎, implying that for all 𝑎 ∈ 𝐼 , 𝑎 ∈ (𝑏). □

Technically we have omitted the step where (𝑏) ∈ 𝐼 , but that is obvious.

Theorem 3.23.  In a Principal Ideal Domain, every non-zero prime ideal is maximal.

Proof of Theorem 3.23.  Suppose (𝑝) is a prime ideal of a ring 𝑅 and (𝑝) ≤ (𝑎); we want
to show that (𝑝) = (𝑎) or (𝑝) = 𝑅. Note 𝑝 ∈ (𝑎), meaning there exists some 𝑏 such
that 𝑎𝑏 = 𝑝. If 𝑎 ∈ (𝑝) we are done, otherwise 𝑏 ∈ (𝑝) implies there is some 𝑐 such that
𝑏 = 𝑐𝑝. But then

𝑎𝑏 = 𝑎(𝑐𝑝) = 𝑝 ⟹ 𝑎𝑐 = 1

and thus (𝑎) = 𝑅 as every 𝑟 ∈ 𝑅 can be expressed as 𝑎(𝑐𝑟). □

Theorem 3.24.  A ring 𝑅 is a field if and only if the polynomial ring 𝑅[𝑥] is a Principal
Ideal Domain.

Proof of Theorem 3.24.  If 𝑅 is a field then 𝑅[𝑥] is obviously a Euclidean Domain:
consider |𝑓| = deg 𝑓  as the norm.

If 𝑅[𝑥] is a Principal Ideal Domain, then note (𝑥) is a prime ideal of 𝑅[𝑥], meaning it is
maximal. Further note that 𝑅[𝑥]

(𝑥) ≅ 𝑅. By Theorem 3.13, 𝑅 is a field. □

As a corollary, 𝑅 is a field if and only if 𝑅[𝑥] is a Euclidean Domain.

3.3.4 Unique Factorization Domains

Finally we study rings where every element can be uniquely factored (up to units).
Prototypical examples include ℤ and 𝐹[𝑥] (where 𝐹  is an arbitrary field). But first we ought
to define a notion of prime and irreducible.

Definition 3.25 (Prime Ring Elements).  An element 𝑝 of ring 𝑅 is prime if and
only if (𝑝) is a prime ideal.

As an example, notice that the prime ideals in ℤ are exactly those that can be represented as
(𝑝) (where 𝑝 is a prime number). That is why it makes sense to consider the prime numbers

⁴The zero ideal is trivially principal, so we do not need to consider it.
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as prime ring elements in ℤ. (Further notice that negative primes, such as −2 and −3, are
also prime ring elements.)

Definition 3.26 (Irreducible Elements).  An element 𝑟 of ring 𝑅 is irreducible if
and only if

• 𝑟 is not a unit,
• 𝑟 is not the product of any two non-units. In other words, if 𝑟 = 𝑎𝑏 for 𝑎, 𝑏 ∈ 𝑅,

then one of 𝑎 and 𝑏 must be a unit.

Irreducibles and primes are very closely related. In an integral domain, primes are always
irreducible: if 𝑎𝑏 = 𝑝 then one of 𝑎 or 𝑏 is in (𝑝). Say 𝑎 is in (𝑝). Then 𝑎 = 𝑝𝑟 and 𝑝𝑟𝑏 = 𝑝,
implying 𝑟𝑏 = 1, i.e. 𝑏 is a unit.

Similarly, in a Principal Ideal Domain irreducibles are always prime. Say 𝑝 is irreducible;
then any ideal containing (𝑝) must be of the form (𝑚), meaning 𝑝 = 𝑟𝑚 for some 𝑟 ∈ 𝑅.
The irreducibility of 𝑝 implies either 𝑟 or 𝑚 is a unit; if 𝑟 is a unit then (𝑝) = (𝑚), and if 𝑚
is a unit then (𝑚) = 𝑅. Thus (𝑝) is maximal and hence prime (as maximal ideals are prime
in Principal Ideal Domains).

Polynomial rings over arbitrary fields provide the prototypical example of irreducible
elements, and indeed, they are the primary use for the theory of irreducible elements.
Consider ℤ[𝑥]. The only unit is 1, and the irreducible ring elements are precisely the
irreducible polynomials in ℤ[𝑥].

Here is the important part: every polynomial in ℤ[𝑥] can be uniquely factored into
irreducible polynomials, full stop. We can make a very similar claim about ℝ[𝑥], as we
will soon see.

Definition 3.27 (Unique Factorization Domain).  A ring 𝑅 is a Unique Factorization
Domain if and only if for every 𝑟 ∈ 𝑅,

• 𝑟 can be factored into a finite number of irreducible elements 𝑟 = 𝑝1𝑝2…𝑝𝑛,
• if 𝑟 can be factored into irreducible elements 𝑟 = 𝑝1𝑝2…𝑝𝑛 and 𝑟 = 𝑞1𝑞2…𝑝𝑚,

then there is a bijection 𝜋 : {1, …, 𝑛} ⟶ {1, …, 𝑚} such that 𝑝𝑖 and 𝑞𝜋(𝑖) are
identical up to multiplication by a unit. In other words, 𝑝𝑖 = 𝑞𝜋(𝑖)𝑢, where 𝑢 is a
unit.

Informally, the second condition means all factorizations of a ring element into
irreducibles are unique, up to multiplication by a unit for each irreducible factors.

Exercise 3.28.  Prove that non-zero elements in a Unique Factorization Domain are
prime if and only if they are irreducible.

Now we look at ℝ[𝑥]. The units are scalars (i.e. members of ℝ, and up to scaling by constant
factors (e.g. (2𝑥 + 2)(𝑥 − 1) = (𝑥 + 1)(2𝑥 − 2)), the factorization of a polynomial into
irreducible polynomials is unique. So ℝ[𝑥] is a Unique Factorization Domain.
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You may also notice that ℝ is trivially a Unique Factorization Domain (as ℝ is a field). In
fact, it is the case for any ring 𝑅 that

𝑅 UFD ⟺ 𝑅[𝑥] UFD.

Obviously 𝑅[𝑥] UFD ⟹ 𝑅 UFD as every ring element in 𝑅 needs to be factorizable in
𝑅[𝑥], and each of these factorizations must solely be in scalars. The other direction is much
harder and requires developing a good bit of theory.

Definition 3.29 (Ring of Fractions).  Given an integral domain 𝑅, we may define a
ring of fractions as ordered pairs (𝑎, 𝑏) where 𝑏 ≠ 0, which suggestively are
represented as 𝑎𝑏 . We say 𝑎𝑏 = 𝑐

𝑑  precisely when 𝑎𝑑 = 𝑏𝑐, which is exactly what you’d
expect when cross-multiplying.

Addition and multiplication are defined exactly the way you think they are:
𝑎
𝑏 + 𝑐

𝑑 = 𝑎𝑑+𝑏𝑐
𝑏𝑑  and 𝑎𝑏 × 𝑐

𝑑 = 𝑎𝑐
𝑏𝑑 .

Note the ring of fractions is actually a field of fractions, for the inverse of 𝑎𝑏  is just 𝑏
𝑎 .

Further note 𝑅 being an integral domain implies 𝑅[𝑥] is an integral domain too. This is
because for the product of two polynomials 𝑓, 𝑔 ∈ 𝑅[𝑥] to be 0, one of the constant terms of
𝑓  or 𝑔 must be 0. This easily lends itself to a proof by induction on deg 𝑓 + deg 𝑔.

So the ring of fractions in 𝑅[𝑥] is also a field. This allows us to prove Gauss’ Lemma.

Theorem 3.30 (Gauss' Lemma).  Suppose 𝑅 is a Unique Factorization Domain with
field of fractions 𝐹 . If a polynomial 𝑓(𝑥) ∈ 𝑅[𝑥] is reducible in 𝐹[𝑥], then it is
reducible in 𝑅[𝑥].

The idea, very roughly, is to clear the denominators of the factorization in 𝐹[𝑥].

Proof of Theorem 3.30.  Say 𝑓(𝑥) = 𝐴(𝑥)𝐵(𝑥) in 𝐹[𝑥]. Each coefficient of 𝐴 and 𝐵 is in
𝐹 , meaning that informally, we may “cross-multiply the denominators” to get
𝑟𝑓(𝑥) = 𝐴′(𝑥)𝐵′(𝑥) in 𝑅[𝑥] for some 𝑟 ∈ 𝑅.

If 𝑟 is a unit, then 𝑓(𝑥) = 𝑟−1𝐴′(𝑥)𝐵′(𝑥) is a valid factorization in 𝑅[𝑥]. Now suppose
not. Because 𝑅 is a Unique Factorization Domain, we can write 𝑟 = 𝑝1…𝑝𝑛 for
irreducibles 𝑝1, …, 𝑝𝑛. By Exercise 3.28, (𝑝1) is a prime ideal.

Taking the equation modulo 𝑝1, we see that 0 = 𝐴′(𝑥)𝐵′(𝑥) in 𝑅
(𝑝1) [𝑥]. Now note

𝑅
(𝑝1) [𝑥] is an integral domain because 𝑅

(𝑝1)  is one due to (𝑝1) being prime, and

𝑅
(𝑝1)

integral domain ⟹ 𝑅
(𝑝1)

[𝑥] integral domain.

This means that one of 𝐴′(𝑥) or 𝐵′(𝑥) is equivalent to 0 modulo 𝑝1; suppose without
loss of generality it is 𝐴′(𝑥). But then 𝐴′(𝑥) = 𝑝𝐶(𝑥), meaning that we may write
𝑝2…𝑝𝑛 = 𝐶(𝑥)𝐵′(𝑥).
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Now we may easily finish by inducting on the number of irreducibles that 𝑟 factors
into. □

Now we will finally prove for good that 𝑅 UFD ⟹ 𝑅[𝑥] UFD.

Theorem 3.31.  If 𝑅 is a Unique Factorization Domain, then so is 𝑅[𝑥].

Remind yourself of Definition 3.20 and associated facts. It will be important for proving the
uniqueness of factorizations in 𝑅[𝑥].

Proof of Theorem 3.31.  Let 𝑓(𝑥) be a polynomial in 𝑅[𝑥]. If there is some 𝑟 ∈ 𝑅 that
divides 𝑓(𝑥), we may factor it out without worry, so we will now suppose that no such
𝑟 exists. Note 𝐹[𝑥] is a Unique Factorization Domain, so for every 𝑓(𝑥) ∈ 𝑅[𝑥], there is
a unique factorization 𝑓(𝑥) = 𝑝1(𝑥)…𝑝𝑛(𝑥), where the factors are irreducibles in 𝐹[𝑥].

Through Theorem 3.30 we may induce a factorization 𝑓(𝑥) = 𝑞1(𝑥)𝑞2(𝑥)…𝑞𝑛(𝑥) in
𝑅[𝑥] where each 𝑞𝑖(𝑥) is a multiple of 𝑝𝑖(𝑥) in 𝑅. And since no scalar 𝑟 ∈ 𝑅 divides
𝑓(𝑥), there certainly is no scalar dividing any 𝑞𝑖(𝑥).

So each 𝑞𝑖(𝑥) is irreducible, meaning we have an irreducible factorization of 𝑓(𝑥) in
𝑅[𝑥]. We now need to show that it is unique. Suppose we have

𝑞1(𝑥)…𝑞𝑛(𝑥) = 𝑓(𝑥) = 𝑠1(𝑥)…𝑠𝑛(𝑥).

Because 𝐹[𝑥] is a Unique Factorization Domain, for each 𝑖 there is some 𝑎𝑖
𝑏𝑖

∈ 𝑅 such
that 𝑞𝑖(𝑥) = 𝑎𝑖

𝑏𝑖
𝑠𝑖(𝑥).⁵ Then 𝑏𝑖𝑞𝑖(𝑥) = 𝑎𝑖𝑠𝑖(𝑥).

Because no 𝑟 ∈ 𝑅 divides 𝑞𝑖(𝑥), 1 is a greatest common divisor of the coefficients of
𝑞𝑖(𝑥). Likewise for 𝑠𝑖(𝑥). Thus 𝑏𝑖 is a greatest common divisor of the coefficients of
𝑏𝑖𝑞𝑖(𝑥) and 𝑎𝑖 is a greatest common divisor of the divisors of 𝑎𝑖𝑠𝑖(𝑥).

Because greatest common divisors are unique up to multiplication by units, there is
some unit 𝑢𝑖 ∈ 𝑅 such that 𝑎𝑖 = 𝑏𝑖𝑢𝑖. So 𝑞𝑖(𝑥) = 𝑢𝑖𝑠𝑖(𝑥), and as 𝑢𝑖 is obviously a unit
in 𝑅[𝑥] as well, the factorizations of 𝑓(𝑥) are equivalent up to units. □

An easy corollary is that if 𝑅 is a Unique Factorization Domain, then a polynomial ring in 𝑅
with an arbitrary number of variables (even infinite-variable) is also a Unique Factorization
Domain.⁶

A result of this fact is Eisenstein’s Criterion.

Theorem 3.32 (Eistenstein's Criterion).  If 𝑝 is a prime in ℤ and in polynomial
𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎0, 𝑝 divides each of 𝑎0, …, 𝑎𝑛−1 but 𝑝2 does not divide
𝑎0, then 𝑓(𝑥) is irreducible in ℚ[𝑥] (implying it is irreducible in ℤ[𝑥].

⁵For convenience we label 𝑞1, …𝑞𝑛 and 𝑠1, …𝑠𝑛 in a way that allows them to be paired like this.
⁶The polynomial ring 𝑅[𝑥1, 𝑥2] is defined as 𝑅[𝑥1][𝑥2]. Polynomial rings with more variables are defined

similarly. And an infinite-variable polynomial ring 𝑅[𝑥1, 𝑥2, …] is defined as the union of 𝑅[𝑥1], 𝑅[𝑥1, 𝑥2],
and so on.
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This is a special form of a more general result for prime ideals over arbitrary integral
domains. If 𝑎0, …, 𝑎𝑛−1 are in a prime ideal 𝑃  but 𝑎0 is not in 𝑃 2, 𝑓(𝑥) is irreducible.

Proof of Theorem 3.32.  We prove the general version. If 𝑓(𝑥) was reducible into
𝑓(𝑥) = 𝑎(𝑥)𝑏(𝑥), then 𝑥𝑛 ≡ 𝑎(𝑥)𝑏(𝑥) (mod 𝑃). Since 𝑃  is prime, 𝑅𝑃  is an integral
domain, meaning at least one of 𝑎0 and 𝑏0 (the constant terms of 𝑎(𝑥) and 𝑏(𝑥)) must
be 0 modulo 𝑃 . Very informally, this means that

• we may keep noticing that one of 𝑎(𝑥) and 𝑏(𝑥) is divisible by 𝑥 in 𝑅𝑃 ,
• factor out the 𝑥,
• and then repeat the process,

until we conclude that 𝑎(𝑥) and 𝑏(𝑥) are of the form 𝑥𝑘 and 𝑥𝑗 in 𝑅𝑃 .

But this means that 𝑎0 ∈ 𝑃  and 𝑏0 ∈ 𝑃 , which implies 𝑎0𝑏0 ∈ 𝑃 2, contradiction. □

We finish by relating Principal Ideal Domains to Unique Factorization Domains.

Theorem 3.33.  Every Principal Ideal Domain is a Unique Factorization Domain.

To prove that Principal Ideal Domains have finite factorizations into irreducibles we
establish two preliminary results.

Theorem 3.34.  Consider a chain of ideals

(𝑎0) ≤ (𝑎1) ≤ …

in a Principal Ideal Domain.

Then the chain must stabilize at some point. In other words, there is some 𝑛 such that
for all 𝑘 ≥ 𝑛, (𝑎𝑘) = (𝑎𝑛).

Proof of Theorem 3.34.  Note 𝐼 = (𝑎0) ∪ (𝑎1) ∪ … is an ideal and it can be represented
as (𝑎) for some 𝑎 in the Principal Ideal Domain. Since 𝐼  contains 𝑎, there must be some
(𝑎𝑛) that contains 𝑎. But then (𝑎𝑛) = (𝑎), which implies the result. □

Theorem 3.35 (Kőnig's Lemma).  Consider a tree 𝑇  with an infinite number of
vertices, each with finite degree. Root it at any vertex 𝑣0. Then 𝑇  has a branch of
infinite length.

An alternative formation of Theorem 3.35 is that every connected graph 𝐺 with infinite
vertices, each with finite degree, has an infinitely long simple path.⁷ It is a trivial corollary
of this statement as we may remove a subset of the edges to make the remaining graph a
tree. The infinite branch in that tree is still a valid simple path when we add the removed
edges back to the graph.

⁷A simple path is one that does not ever visit the same vertex twice.
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Proof of Theorem 3.35.  We start with 𝑣0. One of its children must have infinite
descendants, otherwise 𝑇  would be finite as 𝑣0 has finitely many children. Say the
child with infinite descendants is 𝑣1. Then 𝑣1 is the root of an infinite subtree
satisfying the conditions of the lemma.

Now we repeat the process on 𝑣1. This generates a path of infinite length 𝑣0𝑣1… as
desired. □

Each node of a binary tree has a finite number of neighbors (at most 3). So by Theorem 3.35,
a binary tree where every branch has finite length must be finite.

Now we prove the main result.

Proof of Theorem 3.33.  To produce a finite irreducible factorization, we recursively
apply the following algorithm:

• If 𝑟 is irreducible, we are done.
• Otherwise, we may factor 𝑟 = 𝑎𝑏, where neither 𝑎 nor 𝑏 is a unit. Then apply the

algorithm onto 𝑎 and 𝑏 to produce irreducible factorizations 𝑝1…𝑝𝑛 and 𝑞1…𝑞𝑚;
return 𝑝1…𝑝𝑛𝑞1…𝑞𝑚 as the irreducible factorization of 𝑟.

This algorithm generates a binary tree: each reducible 𝑟 has children 𝑎 and 𝑏. This
binary tree has no infinite-length branches by Theorem 3.34,⁸ thus it is finite by
Theorem 3.35. So the algorithm terminates in a finite number of steps and thus returns
a finite irreducible factoring of 𝑟.

To show that each factorization is unique up to units, consider two factorizations

𝑟 = 𝑝1…𝑝𝑛 = 𝑞1…𝑞𝑚 where 𝑛 ≥ 𝑚.

We show they are essentially equivalent⁹ by inducting on 𝑛. Note that 𝑝1 divides some
𝑞1, …, 𝑞𝑚; without loss of generality say 𝑝1 = 𝑞1𝑢. Then the factorizations

𝑝2…𝑝𝑚 = (𝑢𝑞2)𝑞3…𝑞𝑚

are essentially equivalent by induction. Since 𝑝1 and 𝑞1 are essentially equivalent, we
are done. □

⁸Suppose it had an infinite branch 𝑎0, 𝑎1, …; note 𝑎0 ∣ 𝑎1 ∣ … and (𝑎𝑛) ≠ (𝑎𝑛+1) as 𝑎𝑛 is the product of
𝑎𝑛+1 and a non-unit. This would induce an infinite chain of ideals (𝑎0) ≤ (𝑎1) ≤ … which doesn’t
terminate, contradicting Theorem 3.34.

⁹Formally, this means we can set up the bijection required in the definition of a Unique Factorization
Domain.
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Chapter 4

Modules

I presume you have a basic understanding of a field and vector space from linear algebra.
From now on, we work exclusively with unital commutative rings, which is basically a
field but without multiplicative inverses. (In fact, one could consider a field to be such a ring
with multiplicative inverses.)

Just as we extend fields to vector spaces, we can extend rings to modules. One might
expect modules to be very similar to fields, but just by dropping the inverse requirement in
fields, we get some very counterintuitive consequences.

Definition 4.1 (Module).  Given a ring (𝑅, +𝑅, ×), an 𝑅-module is a triple
(𝑀, +𝑀 , ⋅), where + is an associative binary function of the form 𝑀 × 𝑀 → 𝑀  and
× is a binary function of the form 𝑅 × 𝑀 → 𝑀  that satisfy the following properties:

• (𝑀, +𝑀) forms an abelian group.
• Addition distributes over scalar multiplication: (𝑟 +𝑅 𝑠) ⋅ 𝑚 = 𝑟 ⋅ 𝑚 +𝑀 𝑠 ⋅ 𝑚.
• Scalar multiplication is associative with ring multiplication:

(𝑟 × 𝑠) ⋅ 𝑚 = 𝑟 ⋅ (𝑠 ⋅ 𝑚).
• The ring multiplicative identity 1𝑅 of 𝑅 is also a scalar multiplicative identity:

1 ⋅ 𝑚 = 𝑚.

We drop this requirement when 𝑅 is a ring without 1 (though we will seldom ever
study this case).

(Note that 𝑟, 𝑠 ∈ 𝑅 and 𝑚 ∈ 𝑀 .)

We will often use + to denote addition under both 𝑅 and 𝑀 . Furthermore, we will usually
drop the × and ⋅ operators and implicitly perform × and ⋅ before +𝑅 and +𝑀 , just as in
usual arithmetic.

Here are some examples of modules:

• Any vector space.
• Just as ℝ𝑛 is an ℝ-vector space, ℤ𝑛 is a ℤ-module.
• And just as ℝℕ is a ℝ-vector space, ℤℕ is a ℤ-module.

There is also a notion of a submodule, which is exactly what you’d expect.
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Definition 4.2 (Submodule).  Given an 𝑅-module 𝑀  and 𝑁 ⊆ 𝑀 , we say 𝑁  is a
submodule of 𝑀  if 𝑁  is closed under addition and scalar multiplication. We denote
this as 𝑁 ≤ 𝑀 .

Note 𝑁  may be considered as an 𝑅-module in its own right.

Exercise 4.3 is really important and you should not move on until you have answered it.

Exercise 4.3.  Given any ring 𝑅, we may consider 𝑅 as an 𝑅-module. (Work out the
details!) What are the submodules of 𝑅?

4.1 Homomorphisms and Isomorphisms

You doubtless are familiar with the notion of linear maps in linear algebra. Another term
for them is vector space homomorphisms. And module homomorphisms are pretty
much the same.

Definition 4.4 (Homomorphism).  A homomorphism 𝜑 : 𝑀 → 𝑃  (where 𝑀  and
𝑆 are both 𝑅-modules; it is important that the underlying ring is the same) is a
function where

𝜑(𝑚1 + 𝑚2) = 𝜑(𝑚1) + 𝜑(𝑚2) and 𝜑(𝑟𝑚) = 𝑟𝜑(𝑚)

for all 𝑚1, 𝑚2 ∈ 𝑀  and 𝑟 ∈ 𝑅.

By the way, just as you would expect, ker 𝜑 ≤ 𝑀  and im 𝜑 ≤ 𝑃 .

In a group we have normal subgroups. In a ring we have ideals. What is the equivalent for
modules? In other words, which submodules have representation invariance, and which
submodules may appear as the kernel of a module homomorphism? The answer turns out to
be all of them.

Note that given modules 𝑁 ≤ 𝑀 , we have representation invariance if we define 𝑁 -coset
addition and multiplication as

• (𝑚1 + 𝑁) + (𝑚2 + 𝑁) = (𝑚1 + 𝑚2) + 𝑁
• 𝑟(𝑚 + 𝑁) = (𝑟𝑚) + 𝑁 ,

respectively. Thus

• 𝑀
𝑁  is a well-defined quotient module,

• and trivially, any 𝑁 ≤ 𝑀  is the kernel of the obvious homomorphism 𝜑 : 𝑀 → 𝑀
𝑁  (so

any 𝑁  may appear as a kernel).

The isomorphism theorems are precisely what you think they are:

1. If 𝜑 : 𝑀 → 𝑃  is a homomorphism, then 𝑀𝑃 ≅ im 𝜑.
2. If 𝑁, 𝑆 ≤ 𝑀 , then 𝑁+𝑆

𝑁 ≅ 𝑆
𝑁∩𝑆 .

3. If 𝑁 ≤ 𝑆 ≤ 𝑀 , then
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𝑀
𝑁
𝑆
𝑁

≅ 𝑀
𝑆

.

4. If 𝑁 ≤ 𝑀 , then there is an inclusion-preserving bijection between the 𝑆 where
𝑁 ≤ 𝑆 ≤ 𝑀  and the submodules of 𝑀𝑁 .

This exercise will be important when proving Theorem 4.48. It is also worth working
through in its own right.

Exercise 4.5.  Show that given modules 𝑀1 and 𝑀2 with submodules 𝑁1 ≤ 𝑀1 and
𝑁2 ≤ 𝑀2,

𝑀1 ⊕ 𝑀2
𝑁1 ⊕ 𝑁2

≅ 𝑀1
𝑁1

⊕ 𝑀2
𝑁2

.

This will allow us to inductively deduce that given modules 𝑀𝑖 and 𝑁𝑖 ≤ 𝑀𝑖 for
1 ≤ 𝑖 ≤ 𝑘,

⨁
𝑘

𝑖=1
𝑀𝑖/ ⨁

𝑘

𝑖=1
𝑁𝑖 ≅ ⨁

𝑘

𝑖=1

𝑀𝑖
𝑁𝑖

.

4.2 Finitely Generated Modules

In linear algebra we are often interested in finite-dimensional vector spaces. Module theory
is the same. But there are many key differences. For one, not every finitely generated
module has a basis. (Those that have a basis are called free modules.) Furthermore, there
are finitely generated modules with submodules that cannot be finitely generated! (Modules
whose submodules are all finitely generated are called Noetherian.)

In linear algebra we may conflate a lot of concepts, such as “finite dimensional” and “finitely
generated”, because they are all equivalent. Module theory is not so kind, so we will be a lot
more precise. To that end, we will be defining some familiar concepts in linear algebra from
the ground up.

For each of these definitions, 𝑚𝑖 ∈ 𝑀  and 𝑟𝑖 ∈ 𝑅 for each sensible 𝑖.

Definition 4.6 (Independent Set).  In an 𝑅-module 𝑀 , an independent set of
elements {𝑚1, …, 𝑚𝑘} is one where the only solution to the equation

𝑟1𝑚1 + … + 𝑟𝑘𝑚𝑘 = 0

is 𝑟1 = … = 𝑟𝑘 = 0.
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Definition 4.7 (Spanning Set).  In an 𝑅-module 𝑀 , a spanning set (or alternatively,
generating set) of elements {𝑚1, …, 𝑚𝑘} is one where for every 𝑚 ∈ 𝑀 , there is a
solution to the equation

𝑟1𝑚1 + … + 𝑟𝑘𝑚𝑘 = 𝑚.

Definition 4.8 (Finitely Generated Modules).  A module is finitely generated if it
has a finite spanning set.

Definition 4.9 (Basis and Free Module).  A basis for a module is an independent
and spanning set. A module with a basis is free.

In linear algebra,

• every vector space has a basis;
• every finitely generated vector space has a finite basis.

Neither of these are true for modules. There are modules without a basis, and a module
being finitely generated does not even imply it has a basis, let alone a finite basis.

Example 4.10.  Consider ℚ as a ℤ-module. It has no basis because any generating set
must contain two distinct rationals 𝑞1 and 𝑞2, and there is always a non-trivial solution
to 𝑧1𝑞1 + 𝑧2𝑞2 = 0 where 𝑧1, 𝑧2 ∈ ℤ.

Example 4.11.  More generally, for any ring 𝑅 that is not a field and a non-trivial ideal
𝐼  (i.e. 𝐼 ≠ 0 and 𝐼 ≠ 𝑅), 𝑅𝐼  is a module with no basis. Any non-empty set
{𝑟1 + 𝐼, …, 𝑟𝑘 + 𝐼} is not independent because for any 𝑖 ∈ 𝐼 ,

𝑖(𝑟1 + 𝐼) + … + 𝑖(𝑟𝑘 + 𝐼) = 0 + 𝐼.

Furthermore, 𝑅𝐼  is finitely generated by 1. So it is also an example of a finitely
generated module without a basis.

Bases behave differently in vector spaces and modules; one might say that bases in modules
are not well-behaved. But even more distressingly, finitely generated modules are not well-
behaved either. To be more specific:

• In linear algebra, any subspace of a finitely generated vector space is finitely generated.
(This is more familiarly said as “any subspace of a finite-dimensional vector space is
finite-dimensional” because being finitely generated and having a finite basis are the
same thing.)

• In module theory, there are finitely generated modules with submodules that are not
finitely generated.
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Example 4.12.  Let me give you a concrete example of a ring 𝑅 with an ideal 𝐼  that is
not finitely generated. Considering 𝑅 as an 𝑅-module, 𝑅 is obviously finitely
generated. But 𝐼  will be a submodule of 𝑅 that is not finitely generated.

Specifically, we define 𝑅 to be the ring

ℤ[𝑥0, 𝑥1, …] = ⋃
∞

𝑖=0
ℤ[𝑥0, …, 𝑥𝑖],

the infinite-variable ring of integer polynomials where each individual polynomial has
a finite number of variables.

Now take the ideal 𝐼 = (𝑥0, 𝑥1, …), i.e. the ideal generated by the set {𝑥0, 𝑥1, …}. Note
𝐼  is the set of polynomials with a constant term of 0.

There is no finite set of polynomials {𝑓0, …, 𝑓𝑛} that generates 𝐼 , for there is always
some maximum 𝑘 such that the coefficient of 𝑥𝑘 in some 𝑓𝑖 is non-zero. Because
every polynomial in 𝐼  has a constant term of 0, coefficient matching insinuates
that no linear combination of {𝑓0, …, 𝑓𝑛} in ℤ[𝑥0, 𝑥1, …] yields 𝑥𝑘.

By the way, we could have used any arbitrary ring instead of ℤ for this example. We just
picked ℤ for concreteness.

Sure, not every finitely generated module has the property that all its submodules are
finitely generated. But many of the modules we care about do have that property,¹ and it is a
very convenient property to have (for it makes modules more well-behaved), so we are
interested in studying these modules.

Definition 4.13 (Noetherian Modules).  An 𝑅-module is Noetherian if all of its
submodules are finitely generated over 𝑅.

Obviously a Noetherian module is finitely generated over 𝑅 as well, because every module
is a submodule of itself.

By the way, we say a ring 𝑅 is Noetherian if 𝑅 may be considered as a Noetherian 𝑅-
module. Concretely, this is equivalent to every ideal of 𝑅 being finitely generated.

Since being Noetherian is such a useful property, we’d like to characterize which modules
are Noetherian.

¹The complexity of the example I gave is a testament to this fact: there were no simpler modules that lack
this property.
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Theorem 4.14 (Characterizations of Noetherian Modules).  An 𝑅-module 𝑀  is
Noetherian if any of three equivalent conditions hold:

1. Every submodule of 𝑀  is finitely generated under 𝑅.
2. Any chain of increasing submodules 𝑁0 ≤ 𝑁1 ≤ … of 𝑀  must eventually

terminate. That is, there is always some 𝑘 such that for all 𝑖 ≥ 𝑘, 𝑁𝑖 = 𝑁𝑘.
3. Any non-empty family of submodules has a maximal element. That is, given a

family of submodules ℱ, there is some 𝑁max ∈ ℱ such that for all 𝑁 ∈ ℱ, 𝑁max
is not a proper subset of 𝑁 .

Proof of Theorem 4.14.  Here is the strategy: we will prove (1) ⟹ (2) and
¬(1) ⟹ ¬(2), establishing (1) ⟺ (2). Then we will show (2) ⟹ (3) and
¬(2) ⟹ ¬(3) to finish the proof.

• (1) ⟹ (2): Let 𝑁∞ = ⋃∞
𝑖=0 𝑁𝑖. Then 𝑁∞ is obviously a submodule of 𝑀  and

thus is finitely generated by some set 𝑆. Then there is some 𝑁𝑖 such that 𝑆 ⊆ 𝑁𝑖.²
From this we may conclude 𝑁𝑖 = 𝑁∞.³

• ¬(1) ⟹ ¬(2): Suppose there is some 𝑁 ≤ 𝑀  that is not finitely generated under
𝑅. Then we may inductively construct a sequence of elements in 𝑁  as follows:

‣ 𝑛0 is just some arbitrary element of 𝑁 .
‣ 𝑛𝑖+1 is an element of 𝑁  that is not a linear combination of {𝑛0, …, 𝑛𝑖}.⁴

Now let 𝑁𝑖 be the submodule of 𝑁  generated by {𝑛0, …, 𝑛𝑖}. Note

𝑁0 < 𝑁1 < …

which is our witness to ¬(2).

• (2) ⟹ (3): Suppose ℱ is a family of submodules of 𝑀 . Define an increasing
chain of submodules from ℱ as follows:

‣ 𝑁0 is just some arbitrary submodule in ℱ.
‣ If 𝑁𝑖 is maximal, then 𝑁𝑖+1 = 𝑁𝑖, and otherwise, 𝑁𝑖+1 is some submodule

such that 𝑁𝑖 < 𝑁𝑖+1.

Since the sequence must terminate, the 𝑁𝑖 it terminates at must be a maximal
submodule.

• ¬(2) ⟹ ¬(3): If we have a chain 𝑁0 < 𝑁1 < … then the family {𝑁0, 𝑁1, …}
does not have a maximal submodule.

□

²For each 𝑠 ∈ 𝑆, if 𝑠 ∈ 𝑁∞ then there must be some 𝑁𝑖 such that 𝑠 ∈ 𝑁𝑖. As 𝑆 is finite we can just take
the largest such 𝑖.

³Because 𝑆 ⊆ 𝑁𝑖, the submodule of 𝑁  generated by 𝑆, i.e. 𝑁∞, is also a submodule of 𝑁𝑖.
⁴Such an 𝑛𝑖+1 always exists because otherwise, 𝑁  would be finitely generated by {𝑛0, …, 𝑛𝑖},

contradiction.
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As a digression, there is a notion of Noetherian induction that is highly related to the
terminating chain condition on Noetherian modules. The idea is as follows: if we want to
show a property holds for every submodule in a family of submodules ℱ, it suffices to show
that for any 𝑁 ∈ ℱ,

{𝑃 ∈ ℱ | 𝑃 > 𝑁} all satisfy the property ⟹ 𝑁 satisfies the property.

Theorem 4.15.  It is a very useful fact that if 𝑁 ≤ 𝑀 , then

𝑀
𝑁

and 𝑁 Noetherian ⟺ 𝑀 Noetherian.

Proof of Theorem 4.15.  For the forward direction, we use the chain characterization of
Noetherian modules. Given any chain 𝑀0 ≤ 𝑀1 ≤ … of submodules of 𝑀 , note that

𝑀0 ∩ 𝑁 ≤ 𝑀1 ∩ 𝑁 ≤ … and 𝑀0 + 𝑁
𝑁

≤ 𝑀1 + 𝑁
𝑁

≤ …

both terminate. Suppose they both terminate by 𝑀𝑖 and take any 𝑘 ≥ 𝑖. Then note that
for any 𝑚 ∈ 𝑀𝑘, 𝑚 ∈ 𝑀𝑘 + 𝑁 = 𝑀𝑖 + 𝑁 .⁵ Thus there is some 𝑚𝑖 ∈ 𝑀𝑖 such that
𝑚 − 𝑚𝑖 ∈ 𝑁 . Then 𝑚 − 𝑚𝑖 ∈ 𝑀𝑘 ∩ 𝑁 = 𝑀𝑖 ∩ 𝑁 ⊆ 𝑀𝑖, meaning that
𝑚𝑖 + (𝑚 − 𝑚𝑖) ∈ 𝑀𝑖.

Thus 𝑀𝑘 ⊆ 𝑀𝑖, meaning 𝑀0 ≤ 𝑀1 ≤ … terminates at 𝑀𝑖.

For the backward direction,
• 𝑀

𝑁  is Noetherian by the Fourth Isomorphism Theorem, as every chain of
submodules of 𝑀𝑁  corresponds to a chain of submodules of 𝑁  containing 𝑀 . The
latter terminates as 𝑀  is defined to be Noetherian.

• and 𝑁  is Noetherian as every submodule of a Noetherian submodule is
Noetherian.

□

There is a very similar fact to Theorem 4.15 concerning solvable groups. If 𝑁 ⊴ 𝐺, then

𝐺
𝑁

and 𝑁 solvable ⟺ 𝐺 solvable.

The proof is also very similar.

Example 4.16.  If 𝑅 is a Noetherian ring and 𝑀  is a finitely generated 𝑅-module,
show that 𝑀  is a Noetherian 𝑅-module.

Solution to Example 4.16.  It is easy to prove 𝑅𝑛 is a finitely generated 𝑅-module via
induction. Now suppose 𝑀  is generated by {𝑚1, …, 𝑚𝑛}. Now define 𝜑 : 𝑅𝑛 → 𝑀
where

𝜑 : (𝑟1, …, 𝑟𝑛) ↦ 𝑟1𝑚1 + … + 𝑟𝑛𝑚𝑛.

⁵The Fourth Isomorphism Theorem says that 𝑀𝑘+𝑁
𝑁 = 𝑀𝑖+𝑁

𝑁 ⟺ 𝑀𝑘 + 𝑁 = 𝑀𝑖 + 𝑁 .
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Clearly 𝜑 is surjective. So by the First Isomorphism Theorem, 𝑅𝑛

ker 𝜑 ≅ 𝑀 . Since 𝑅𝑛 is
Noetherian, so is 𝑅𝑛

ker 𝜑 . □

An easy corollary of Example 4.16 is that if 𝑛 ∈ ℕ and 𝑅 is a Noetherian ring, 𝑅𝑛 is a
Noetherian module.

Finally, we show how we may use Noetherian rings to generate Noetherian polynomial
rings.

Theorem 4.17 (Hilbert's Basis Theorem).  If 𝑅 is a Noetherian ring, then 𝑅[𝑥] is
too.

As a trivial consequence we will get that 𝑅[𝑥1, …, 𝑥𝑛] is Noetherian too.

Proof of Theorem 4.17.  We will show that any ideal 𝐼  of 𝑅[𝑥] is finitely generated. For
each 𝑛 ∈ ℕ, we define the ideal 𝐽𝑛 as follows:

𝐽𝑛 = {𝑟 ∈ 𝑅 : ∃𝑓 ∈ 𝑅[𝑥] with deg(𝑓) < 𝑛 and 𝑓 + 𝑟𝑥𝑛 ∈ 𝐼}.

Note 𝐽0 ≤ 𝐽1 ≤ … because

𝑓 + 𝑟𝑥𝑛 ∈ 𝐼 ⟹ 𝑟𝑓 + 𝑟𝑥𝑛+1 ∈ 𝐼.

(It is easy to verify each 𝐽𝑛 is an ideal.)

Since 𝑅 is Noetherian the chain 𝐽0 ≤ 𝐽1 ≤ … stabilizes at some 𝐽𝑘 and all of these
ideals are finitely generated.

For each 𝑛 ≤ 𝑘, let 𝐹𝑛 be a finite set of polynomials of degree 𝑖 whose leading
coefficients generate 𝐽𝑛. Define 𝐹 = ⋃𝑘

𝑛=0 𝐹𝑛. We show that every polynomial
𝑓 ∈ 𝑅[𝑥] is generated by the polynomials in 𝐹 . To do this, we induct on deg 𝑓 .
Obviously 𝑓 = 0 works, so now we can presume that deg 𝑓  is a natural number.

1. deg(𝑓) = 𝑛 ≤ 𝑘: Let 𝑟 be the leading coefficient of 𝑓 . Note by definition that
𝑟 ∈ 𝐽𝑛, meaning we can subtract some linear combination of polynomials in 𝐹𝑛
to get a polynomial of degree less than 𝑛. Said polynomial can be generated from
𝐹  by the induction hypothesis.

2. deg(𝑓) = 𝑛 > 𝑘: Let 𝑟 be the leading coefficient of 𝑓 , meaning 𝑟 ∈ 𝐽𝑛 = 𝐽𝑘. We
can find some linear combination 𝑔 of polynomials in 𝐹𝑘 such that the leading
coefficient of 𝑔 is 𝑟. Then we may multiply 𝑔 by 𝑥𝑛−𝑘 and subtract that from 𝑓  to
get a polynomial of degree less than 𝑛. Said polynomial can be generated from 𝐹
by the induction hypothesis.

□

This proof is a proof by contradiction, meaning that it does not actually give us a basis of
𝑅[𝑥], it only tells us that one exists. When 𝐹  is a field, we may find a Gröbner basis of any
ideal 𝐼  of 𝐹[𝑥1, …, 𝑥𝑛]. We will not cover how to do that here.
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Theorem 4.17 also holds for modules in general. If 𝑀  is a Noetherian 𝑅-module, then 𝑀[𝑥]
is a Noetherian 𝑅[𝑥]-module.

4.3 Categorical Module Constructions

Given a set of 𝑅-modules, we may either

• take the product of these modules,
• take the coproduct of these modules,
• or take the tensor product of two of these modules.

Furthermore given a ring 𝑅 and set 𝑆 we may construct the free 𝑅-module Free(𝑆).

These constructions are all highly connected with category theory, so this is the perspective
we will introduce them with.

As a preliminary definition we introduce an isomorphism.

Definition 4.18 (Isomorphism).  In a category 𝒞, an arrow 𝑓 : 𝑐 → 𝑑 is an
isomorphism if there exists an arrow 𝑔 : 𝑐 → 𝑑 such that

• 𝑔 ∘ 𝑓 = id𝑐
• 𝑓 ∘ 𝑔 = id𝑑.

Naturally we say 𝑔 is the inverse of 𝑓 , because composing the two arrows gives
identity.

We have discussed the product of two categories before. There is also a notion of the
product of two objects. Before we go into the definition, some motivation is in order. In the
category Set, we would want the product object of sets 𝑆1 and 𝑆2 to be 𝑆1 × 𝑆2. Similarly
in the category group, we would want the product object of groups 𝐺1 and 𝐺2 to be
𝐺1 × 𝐺2. And so on.

Definition 4.19.  A product of two objects 𝑐 and 𝑑 in a category 𝒞 is an object 𝑐 × 𝑑
associated with projection arrows 𝜋𝑐 : 𝑐 × 𝑑 → 𝑐 and 𝜋𝑑 : 𝑐 × 𝑑 → 𝑑 satisfying the
universal property that, for every pair of arrows 𝑓𝑐 : 𝑥 → 𝑐 and 𝑓𝑑 : 𝑥 → 𝑑 coming
from any object 𝑥, there exists a unique 𝑓 : 𝑥 → 𝑐 × 𝑑 such that

𝑓𝑐
𝑓

𝑓𝑑

𝜋𝑐 𝜋𝑑

𝑥

𝑐 𝑐 × 𝑑 𝑑

commutes.

Chapter 4 Modules 65



We have already covered the product of two sets or two groups. The product of two 𝑅-
modules is also exactly what you’d expect: the module 𝑀1 × 𝑀2 with elements (𝑚1, 𝑚2)
and addition being defined coordinate-wise and ring multiplication distributing over each
coordinate.

Not every pair of objects in a category has a product. As a trivial example, consider a
category with only the identity arrows. Then for any distinct objects 𝑐 and 𝑑 in this
category, 𝑐 × 𝑑 does not exist.

Importantly, a pair of objects may have more than one product. But any two products are
equivalent up to unique isomorphism, which in category theory is as good as saying two
objects are the same. For their arrows behave the same, and an object is just the behavior of
the arrows going in and out of it.

Suppose that 𝑐 × 𝑑 and 𝑐 ×′ 𝑑 are distinct products of 𝑐 and 𝑑. Let 𝑐 × 𝑑 project onto 𝑐 and
𝑑 with 𝜋𝑐 and 𝜋𝑑. Similarly, let 𝑐 ×′ 𝑑 project onto 𝑐 and 𝑑 with 𝜎𝑐 and 𝜎𝑑. Then the
universal mapping property permits us to draw the unique dashed arrows in the
commutative diagram below:

𝜋𝑐 𝜋𝑑

𝜎𝑐 𝜎𝑑

𝜋𝑐 𝜋𝑑

𝑐 × 𝑑

𝑐 ×′ 𝑑

𝑐 𝑐 × 𝑑 𝑑
Figure 13: The dashed arrows form our unique isomorphism.

Furthermore there is also the notion of the product of a family of objects. For instance, if we
have a family ℱ = {𝑆1, 𝑆2, …} of objects in Set, the product ∏ ℱ ought to be
𝑆1 × 𝑆2 × …. So we ought to generalize the notion of a product not just to any finite family
of objects (a task that is trivial with recursion), but to infinite families of objects, perhaps
even those that are uncountable.
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Definition 4.20.  A product of a family of objects ℱ in a category 𝒞 is an object ∏ ℱ
along with projection arrows 𝜋𝑐 : ∏ ℱ → 𝑐 for every 𝑐 ∈ ℱ satisfying the universal
property that, for every family of arrows {𝑓𝑐 : 𝑥 → 𝑐 : 𝑐 ∈ ℱ} coming from any object
𝑥, there exists a unique 𝑓 : 𝑥 → ∏ ℱ such that

𝑓𝑐
𝑓

𝜋𝑐

𝑥

𝑐 ∏ ℱ

commutes for every 𝑐 ∈ ℱ.

For the same reason, general products are also unique up to isomorphism (so long as they
exist).

In category theory, any categorical concept has a notion of a dual, where the definition is
kept largely the same but the direction of the arrows are swapped. We have already seen
this with Definition 2.64. Now we will define the dual of a product, the coproduct.

Definition 4.21 (Coproduct).  A coproduct of a family of objects ℱ in a category 𝒞
is an object ⨁ ℱ along with arrows 𝑖𝑐 : ⨁ ℱ → 𝑐 for every 𝑐 ∈ ℱ satisfying the
universal property that, for every family of arrows {𝑓𝑐 : 𝑐 → 𝑥 : 𝑐 ∈ ℱ} pointing into
any object 𝑥, there exists a unique 𝑓 : ⨁ ℱ → 𝑥 such that

𝑓𝑐
𝑓

𝑖𝑐

𝑥

𝑐 ⨁ ℱ

commutes for every 𝑐 ∈ ℱ.

As you might expect, the products in a category 𝒞 correspond to the coproducts in 𝒞op. This
is because we swap the direction of the arrows both in 𝒞op and in the definition of a
coproduct.

What do products and coproducts look like in the category Module𝑅 , where the objects are
𝑅-modules for some ring 𝑅 and the arrows are module homomorphisms? The product is
exactly what you would expect: addition is defined component-wise, and multiplication
distributes across all components. And the projection functions return the appropriate
component.
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Formally, we may consider the product module to consist of all elements of the form
𝜑 : ℱ → ⋃ ℱ where 𝜑(𝑀) ∈ 𝑀  for each 𝑀 ∈ ℱ. The “coefficient” of each 𝑀 ∈ ℱ is
encoded as 𝑓(𝑀), and the projection 𝜋𝑀 : ∏ ℱ → 𝑀  is merely the function 𝜑 ↦ 𝑓(𝑀).

The coproduct behaves exactly the same as the product when ℱ is finite. But this is not the
case when ℱ is infinite. Instead, ⨁ ℱ is the submodule of ∏ ℱ with finitely many non-
zero coefficients. (Formally, this means {𝑀 : 𝑀 ∈ ℱ and 𝑓(𝑀) ≠ 0𝑀} is finite.) The
arrows 𝑖𝑀 : 𝑀 → ⨁ ℱ do exactly what you expect them to: 𝑚 is sent to the function 𝜑
where 𝜑(𝑀) = 𝑚 and 𝜑(𝑁 ≠ 𝑀) = 0.

Why is this the case? Suppose we consider this commutative diagram in Module𝑅 (where
𝑖𝑀  behaves as described above):

𝑓𝑀
𝑓

𝑖𝑀

𝑁

𝑀 ∏ ℱ

We need 𝑓(𝑖𝑀(𝑚)) = 𝑓𝑀(𝑚), and all the consequences that the linearity of 𝑓  give, but
nothing else is required of 𝑓 . The 𝑓𝑀  only determine the behavior of 𝑓  on finite linear
combinations of the form 𝑖𝑀(𝑀), because the linearity constraint on module
homomorphisms (in this case, 𝑓 ) only applies to finite sums.

In other words, if we know 𝑓(𝜑1), 𝑓(𝜑2), …, we can determine 𝑓(𝜑1 + … + 𝜑𝑛) in a
recursive manner: we may determine 𝑓(𝜑1 + … + 𝜑𝑛−1) and 𝑓(𝜑𝑛). But there is nothing
restricting 𝑓(𝜑1 + …). Concretely, if we define 𝜑 : 𝑀 ↦ 1𝑀 , there is nothing stopping us
from having 𝑓(𝜑) = 0𝑁 .

This means ∏ ℱ is too “big” to satisfy the universal property. We need ⨁ ℱ to only consist
of the elements of ∏ ℱ that can be determined by linearity, and this is exactly the elements
with finitely many non-zero coefficients.

Exercise 4.22.  Verify the products and coproducts in Module are as described above.
Concretely, all you need to do is show the existence and uniqueness of 𝑓  that makes
the relevant diagrams commute. Because products and coproducts are unique up to
isomorphism, this also shows that the only product and coproduct modules are of the
forms described.

4.3.1 The Tensor Product

Before I tell you what the tensor product is, I will briefly tell you what it is not. Just as a
matrix is not a 2-dimensional array of elements, a tensor is not an 𝑛-dimensional array of
elements.

The study of tensor products is really the study of bilinear maps, just as the study of
matrices is really the study of linear maps.
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Definition 4.23 (Bilinear Mapping).  Let 𝑀 , 𝑁 , and 𝑃  be 𝑅-modules for some ring
𝑅. Then 𝜑 : 𝑀 × 𝑁 → 𝑃  is bilinear precisely when

• the map 𝑚 ↦ 𝜑(𝑚, 𝑛) is linear for all 𝑛 ∈ 𝑁 ;
• the map 𝑛 ↦ 𝜑(𝑚, 𝑛) is linear for all 𝑚 ∈ 𝑀 .

As a warning, note that while 𝑀 ⨁ 𝑁  has an underlying set of 𝑀 × 𝑁 , the linear maps
𝑀 ⨁ 𝑁 → 𝑃  are not the same as the bilinear maps 𝑀 × 𝑁 → 𝑃 . As an example, if 𝑀 , 𝑁 ,
and 𝑃  are all the ℤ-module ℤ, then

• (𝑥, 𝑦) ↦ 𝑥𝑦 is bilinear considered as a function ℤ × ℤ → ℤ, but not linear when
considered as ℤ ⨁ ℤ → ℤ.

• (𝑥, 𝑦) ↦ 𝑥 + 𝑦 is not bilinear considered as a function ℤ × ℤ → ℤ, but it is linear when
considered as ℤ × ℤ → ℤ.

Just as linearity is preserved when composing linear maps, bilinearity is preserved upon
composition with linear maps too.

Theorem 4.24.  If 𝜑 : 𝑀 × 𝑁 → 𝑃  is bilinear and 𝛾 : 𝑃 → 𝑄 is linear, then
𝜑 ∘ 𝛾 : 𝑀 × 𝑁 → 𝑄 is bilinear.

(Here 𝑀 , 𝑁 , 𝑃 , and 𝑄 are all 𝑅-modules for some ring 𝑅.)

Exercise 4.25.  Verify Theorem 4.24.

We will really quickly establish some category theoretic notions.

Definition 4.26 (Initial Object).  An initial object 𝑐 in a category 𝒞 is one such that,
for any object 𝑑 in 𝒞, there is exactly one arrow 𝑓 : 𝑐 → 𝑑.

Definition 4.27 (Terminal Object).  A terminal object 𝑐 in a category 𝒞 is one such
that, for any object 𝑑 in 𝒞, there is exactly one arrow 𝑓 : 𝑑 → 𝑐.

Note that terminal objects are the dual of initial objects. More precisely, 𝑐 is a terminal
object in 𝒞 if and only if 𝑐 is an initial object in 𝒞op.

To define tensor products, we will construct the category of bilinear maps with domain
𝑀 × 𝑁 . The objects are these bilinear maps, and the arrows between objects
𝜑 : 𝑀 × 𝑁 → 𝑃  and 𝜑′ : 𝑀 × 𝑁 → 𝑄 are the functions of the form 𝛾 : 𝑃 → 𝑄 such that
𝜑′ = 𝛾 ∘ 𝜑.
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Definition 4.28 (Tensor Product).  A tensor product 𝑀 ⊗ 𝑁  is an initial object in
this category.

⊗

𝜑
∃!𝛾

𝑀 × 𝑁 𝑃

𝑄
Figure 17:  Concretely, this means ⊗ : 𝑀 × 𝑁 → 𝑃  is a tensor product if and only if it
satisfies the universal property that, for all bilinear 𝜑 : 𝑀 × 𝑁 → 𝑄, there is a unique

linear 𝛾 : 𝑃 → 𝑄 such that 𝜑 = 𝛾 ∘ ⊗.

The way to prove that a tensor product always exists is via a direct construction. Because
the direct construction is infeasible to work with, we are not going to bother doing it.

Two tensor products are equivalent up to unique isomorphism. Suppose ⊗ and ⊗′ are both
tensor products. Then there exist unique 𝛾 : 𝑃 → 𝑄 and 𝛾′ : 𝑄 → 𝑃  such that

⊗′ = 𝛾 ∘ ⊗

⊗ = 𝛾′ ∘ ⊗′

implying that ⊗ = 𝛾′ ∘ 𝛾 ∘ ⊗. Since 𝛾 and 𝛾′ are unique, they form our unique
isomorphism.

This is why we may refer to the tensor product, rather than a tensor product, for any two
are essentially equivalent. We write 𝑚 ⊗ 𝑛 to denote where the bilinear map ⊗ sends
(𝑚, 𝑛) to.

A few examples of tensor products:

• The tensor product is obviously commutative (bilinearity and the universal property
are symmetric conditions).

• For an 𝑅-module 𝑀 , 𝑅 ⊗ 𝑀  is the linear map 𝜑 : 𝑅 × 𝑀 → 𝑀  where
𝜑 : (𝑟, 𝑚) ↦ 𝑟𝑚.

• For 𝑅-modules 𝑅𝑚 and 𝑅𝑛 and vectors 𝑢 ∈ 𝑅𝑚, 𝑣 ∈ 𝑅𝑛, 𝑅𝑚 ⊗ 𝑅𝑛 is the linear map
(𝑢, 𝑣) ↦ 𝑢𝑣𝑇  (where 𝑣𝑇  denotes the transpose of 𝑣).

Importantly, ⊗ is not generally surjective. For example, if 𝑅 is a field, the codomain of
𝑅𝑚 ⊗ 𝑅𝑛 is 𝑅𝑚𝑛. (More precisely, it is the 𝑚 × 𝑛 matrices whose elements are in 𝑅. But
the two are isomorphic, so it does not matter.)

Now the range of 𝑅𝑚 ⊗ 𝑅𝑛 is not the entirety of 𝑅𝑚𝑛. Informally, we only have 𝑚 + 𝑛
degrees of freedom: 𝑚 from 𝑢 and 𝑛 from 𝑣𝑇 . So the rank of the range is at most dimension
𝑚 + 𝑛, which is less than 𝑚𝑛 when 𝑚 and 𝑛 are sufficiently large.

70 Section 4.3.1 The Tensor Product



To elaborate, saying that 𝑢𝑣𝑇 = 𝑀  for some 𝑚 × 𝑛 matrix 𝑀  specifies a system of 𝑚𝑛
linear equations with 𝑚 + 𝑛 variables (𝑚 from 𝑢 and 𝑛 from 𝑣𝑇 ). It is well-known that if
𝑚 + 𝑛 < 𝑚𝑛, then some of these systems of equations have no solutions. Thus ⊗ cannot be
surjective in this case.

Definition 4.29 (Tensors).  We call the elements of 𝑃  in the tensor product
𝜑 : 𝑀 × 𝑁 → 𝑃  tensors.

Note the difference between a tensor, an element of an 𝑅-module 𝑃 , and a tensor
product, the bilinear map ⊗ : 𝑀 × 𝑁 → 𝑃  satisfying a universal property.

Definition 4.30.  We say that a simple tensor is one that can be expressed in the form
𝑚 ⊗ 𝑛. In other words, a simple tensor is in the range of the tensor product.

We have established that not every tensor is simple. In fact, most of them aren’t. However,
enough tensors are simple to generate the codomain of the tensor product.

Informally, here is why: look at the universal property of the tensor product. We need our
unique linear 𝛾 to behave correctly on simple tensors, and as a consequence their behavior
is defined on linear combinations of simple tensors. But if the codomain were to be bigger,
then 𝛾 can do whatever it wants on the elements in the codomain of ⊗ that are not spanned,
because it does not affect whether 𝜑 = 𝛾 ∘ ⊗.

Theorem 4.31.  Every tensor is the linear combination of some simple tensors.

Proof of Theorem 4.31.  Suppose not. That is, suppose that the tensor product is
⊗ : 𝑀 × 𝑁 → 𝑃  and there exists some 𝑝 ∈ 𝑃  that is not generated by the set
{𝑚 ⊗ 𝑛 : 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁}. Further let the module generated by
{𝑚 ⊗ 𝑛 : 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁} be 𝑆.

Now define 𝜑 : 𝑀 × 𝑁 → 𝑆 as follows: 𝜑 : (𝑚, 𝑛) ↦ 𝑚 ⊗ 𝑛. In other words, 𝜑 is just
⊗ with a restricted codomain. They are essentially the same function.

But now any 𝛾 : 𝑃 → 𝑆 where 𝛾 ↾ 𝑃 = id𝑃  has 𝜑 = 𝛾 ∘ ⊗ has 𝜑 = 𝛾 ∘ ⊗. Because 𝑝 is
linearly independent from 𝑆, we may have 𝛾(𝑝) be any element of 𝑆 while still having
𝛾 be linear. The non-uniqueness of 𝛾 means ⊗ fails to satisfy the universal property,
contradiction. □

4.3.2 Free Modules

Here we will briefly consider general rings, that is, rings that are not necessarily unital or
commutative. When we do so, we will make it very clear.

Every vector space has a basis. This is not the case for modules.
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Definition 4.32 (Free Module).  A free module is a module with a basis. That basis
may either be finite or infinite.

Over commutative rings 𝑅, any two bases of a free 𝑅-module must have the same
cardinality, whether this cardinality is finite or infinite.

Theorem 4.33.  Suppose 𝑅 is a unital commutative ring. If an 𝑅-module 𝑀  has bases
𝐴 and 𝐵, then |𝐴| = |𝐵|.

We will be skipping a lot of details in the proof. It will be very instructive to convince
yourself of the veracity of each step. In particular, identify where exactly we use the
commutativity of 𝑅 in this argument, because as we will soon see, it falls completely
asunder when 𝑅 is not commutative.

Proof of Theorem 4.33.  Take a maximal ideal 𝐼  of 𝑅. If we have a basis of 𝑀  with size 𝑛,
then 𝑀 ≅ 𝑅𝑛, meaning 𝑀 ⊗ 𝑅

𝐼 ≅ (𝑅
𝐼 )𝑛.⁶

Now note (𝑅
𝐼 )𝑛 is a vector space as 𝑅𝐼  is a field. Since the dimension of a vector space

is fixed, so must 𝑛 be. □

Definition 4.34 (Rank of a Free Module).  The rank of a free module whose bases
all have the same cardinality is said cardinality.

However, this is not the case for non-commutative rings.

Example 4.35.  Here is the standard example. I am referencing https://scholarworks.
lib.csusb.edu/cgi/viewcontent.cgi?article=5487&context=etd-project, starting from page
34.

Take a field 𝐹  and a vector space 𝑉  over 𝐹  with a countable basis {𝑒1, …}. Then let
𝑅 = Hom(𝑉 , 𝑉 ), that is, let 𝑅 be the ring of linear maps from 𝑉  to 𝑉 .

Now let 𝑛 be an arbitrary positive number and take the unique linear map 𝑓𝑖 specified
by

𝑓𝑖(𝑒𝑘) = 𝑒𝑘−𝑖
𝑛 +1 if 𝑛 ∣ 𝑘 − 𝑖, otherwise 0

for each 1 ≤ 𝑖 ≤ 𝑛. It is very straightforward to verify {𝑓1, …, 𝑓𝑛} forms a basis of 𝑅.
Informally, they are independent because each 𝑓𝑖 deals with a different residue modulo
𝑛, and they span all of 𝑅 because the 𝑓𝑖 cover all the residues.

However, two bases of an infinitely generated free 𝑅-module must have the same
cardinality, whether 𝑅 is commutative or not.

⁶When we write 𝑀 ⊗ 𝑅
𝐼 , we are really referring to the codomain of the tensor product. This may be

considered a slight abuse of notation.
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Theorem 4.36.  More formally, if 𝐴 is an infinite basis of a free 𝑅-module 𝑀  and 𝐵 is
another basis of 𝑀 , then |𝐴| = |𝐵|.

Proof of Theorem 4.36.  First note 𝐵 is not finite, otherwise
• each 𝑏 ∈ 𝐵 can be represented as a finite linear combination in 𝐴,
• for each 𝑏 ∈ 𝐵, there is some maximal 𝑘 such that the coefficient of 𝑎𝑘 is maximal,
• and taking the maximum over all such 𝑘, we see that there must exist (infinitely

many) 𝑎𝑖 with coefficient 0 in the representation of all 𝑏 ∈ 𝐵,

which easily leads to a contradiction. (Check it yourself!)

Now for each 𝑏 ∈ 𝐵, let 𝐴𝑏 be the subset of 𝐴 that generates 𝑏. (Note 𝐴𝑏 is unique as 𝐴
is a basis.) Now as each 𝐴𝑏 is finite, and ⋃𝑏∈𝐵 𝐴𝑏 = 𝐴, we have that

|𝐴| = |⋃
𝑏∈𝐵

𝐴𝑏| ≤ |𝐵|.

Similarly |𝐵| ≤ |𝐴|. So |𝐴| = |𝐵|, as desired. □

So far we have only described a free module and its cardinality. But we may also generate a
free module.

Definition 4.37 (Free Module).  Given a set 𝑆 and ring 𝑅, the free 𝑅-module
Free(𝑆) is the module with elements 𝑓 : 𝑆 → 𝑅 where {𝑠 ∈ 𝑆 | 𝑓(𝑠) ≠ 0} is finite.

In other words, the free module is the coproduct ⨁𝑠∈𝑆 𝑅, where the copies of 𝑅 are
indexed by the set 𝑆.

Theorem 4.38.  If 𝑆 is a basis for a module 𝑀 , then 𝑀 ≅ Free(𝑆).

This may be a little counterintuitive when we have a module 𝑀  that has bases of different
sizes. But it is certainly possible to have a scenario where 𝑅 ≅ 𝑅2. This could only happen
if 𝑅 is not commutative, because we have established that the bases of a module over a
unital commutative ring have fixed cardinality.

Theorem 4.39.  The free module is solely determined by the cardinality of 𝑆. Formally,
if |𝐴| = |𝐵|, then Free(𝐴) ≅ Free(𝐵).

The isomorphism between Free(𝐴) and Free(𝐵) is really obvious. Furthermore, if 𝑆 is a
basis for the free module 𝑀 , then 𝑀 ≅ Free(𝑆).

Furthermore if |𝐴| is finite then Free(𝐴) ≅ 𝑅|𝐴|.

Just like the free group, the free module also satisfies the universal property.
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Theorem 4.40 (Universal Property of the Free Module).  Given a set 𝑆, an 𝑅-
module 𝑀 , and a function 𝜑 : 𝑆 → 𝑀 , there is a unique homomorphism 𝜓 : 𝑆 → 𝑀
such that 𝜓 ↾ 𝑆 = 𝜑.

id

𝜑
𝜓

𝑆 Free(𝑆)

𝑀
Figure 18: Equivalently, there is a unique 𝜓 such that the given diagram commutes.

Exercise 4.41.  The proof of Theorem 4.40 is spiritually identical to that of the proof of
Theorem 2.62. Carry out the details and prove Theorem 4.40.

Free modules are useful for two reasons:

• Presentations of groups are defined as a quotient of a free group and the least normal
subgroup generated by some relations. Presentations of modules are much the same.

• They are useful for the structure theorem. Roughly speaking, an 𝑛-dimensional
vector space over a field 𝐹  is isomorphic to 𝐹𝑛. Similarly, a finitely generated 𝑅-
module, where 𝑅 is a Principal Ideal Domain, is isomorphic to some quotient of 𝑅𝑛. So
free modules underlie the decomposition of a finitely generated module over a Principal
Ideal Domain, much as 𝐹𝑛 underlies the decomposition of an 𝑛-dimensional vector
space.

The former we will not elaborate on further. The latter will be gone over in the next section.

4.4 Modules Over a Principal Ideal Domain

Take a finitely generated vector space. Every subspace of that vector space is finitely
generated. Distressingly, the same is not true of free modules. To be more precise, free
modules are not necessarily even Noetherian, let alone free. (Recall Example 4.12 and note
that 𝑅 is obviously free as an 𝑅-module.)

However, as we may recall from Example 4.16, if 𝑅 is Noetherian, then every finitely
generated 𝑅-module is Noetherian.

We can take things even further when we have a free module over a Principal Ideal Domain.
Here we get the highly desirable result that every submodule is free.

Theorem 4.42.  If 𝑅 is a Principal Ideal Domain and 𝑀  is a free 𝑅-module, then every
submodule of 𝑀  is also free. Furthermore, the rank of the submodule is less than or
equal to the rank of 𝑀 .
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Note this does not require 𝑀  to have a finite rank.

This proof requires a lot of set theoretic knowledge. It is not crucial to the rest of the text, so
if you find yourself completely lost, it is fine to skip it. To learn the background required for
this proof (and much more), I highly recommend Professor Ernest Schimmerling’s text “A
Course on Set Theory”.

Proof of Theorem 4.42.  Recall that for some 𝐵 we have 𝑀 ≅ Free(𝐵), where Free(𝐵)
is the module with elements 𝑓 : 𝐵 → 𝑅 with {𝑏 ∈ 𝐵 | 𝑓(𝑏) ≠ 0} finite. For notational
convenience, we will be directly reasoning about Free(𝐵).

Suppose 𝐵 is a basis of 𝑀 . By the Well-Ordering Principle, we may take some well-
ordering on 𝐵. For each 𝑏 ∈ 𝐵, define 𝐴𝑏 = {𝑎 ∈ 𝐵 | 𝑎 ≤ 𝑏} and 𝑀𝑏 to be the
submodule of 𝑀  generated by the elements in 𝐴𝑏. (Formally, 𝑀𝑏 ≅ Free(𝐴𝑏).)

Now for any 𝑁 ≤ 𝑀 , define 𝑁𝑏 = 𝑁 ∩ 𝑀𝑏 for each 𝑏 ∈ 𝐵. Further consider the
projection 𝜋𝑏 : 𝑁𝑏 → 𝑅 where 𝜋𝑏 : 𝑓 ↦ 𝑓(𝑏). Now note im 𝜋𝑏 is an ideal of 𝑅, and as
𝑅 is a Principal Ideal Domain, we may consider im 𝜋𝑏 = (𝑟𝑏). Now for each 𝑟𝑏, take
some 𝑛𝑏 ∈ 𝑁𝑏 such that 𝜋𝑏(𝑛𝑏) = 𝑟𝑏, with the stipulation that if 𝑟𝑏 = 0 we must have
𝑛𝑏 = 0.

Now we claim the non-zero 𝑛𝑏 form a basis of 𝑁 . To show this, we use a set-theoretic
method of induction known as transfinite induction. We may do this because every
well-ordering is isomorphic to some ordinal through the Mostowski collapse.

For convenience, we are now going to take every basis of a free module to be an
ordinal 𝛼. This is because the only thing that matters in the basis of a module is the
cardinality; isomorphism takes care of the rest.

First we prove by transfinite induction that the non-zero 𝑛𝑏 are linearly independent.

• 𝛽 = 0: Obvious.
• 𝛽 ⇒ 𝛽 + 1: By the inductive hypothesis, {𝑛𝑏 | 𝑏 ∈ 𝛽, 𝑛𝑏 ≠ 0} is linearly

independent. If {𝑛𝑏 | 𝑏 ∈ 𝛽, 𝑛𝑏 ≠ 0} ∪ {𝑛𝛽} is linearly dependent, this must be
because 𝜋𝑏(𝑛𝛽) = 0, otherwise there is no way to get

𝜋𝑏(𝑟𝛽𝑛𝛽 + ∑ 𝑟𝑏𝑛𝑏) = 0,

which is obviously required if

𝑟𝛽𝑛𝛽 + ∑ 𝑟𝑏𝑛𝑏 = 0.

But then this means 𝑟𝑏 = 0, which means 𝑛𝑏 = 0. So even in this case,
{𝑛𝑏 | 𝑏 ∈ 𝛽 + 1, 𝑛𝑏 ≠ 0} is linearly independent.

• 𝛽 is a limit ordinal: By the inductive hypothesis, {𝑛𝑎 | 𝑎 ∈ 𝛼} is a basis of 𝑁𝛼 for
each 𝛼 < 𝛽 as 𝑁𝛼 ≤ Free(𝛼). Because the coproduct is only concerned with
finite sums, the union of all these bases must be linearly independent, for any
finite sum must be contained in some 𝑁𝛼.
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Now we prove these bases {𝑛𝑏 | 𝑏 ∈ 𝛽, 𝑛𝑏 ≠ 0} generate 𝑁 . Obviously whatever it
generates is a submodule of 𝑁 . But does it generate every 𝑛 ∈ 𝑁? Again, we employ
transfinite induction:

• 𝛽 = 0: Obvious.
• 𝛽 ⇒ 𝛽 + 1: Every 𝑓 ∈ 𝑁  can be expressed as 𝑓𝛽 + 𝑟𝛽𝑛𝛽 by definition of 𝛽, and by

the inductive hypothesis, 𝑓𝛽 is generated by {𝑛𝑏 | 𝑏 ∈ 𝛽, 𝑛𝑏 ≠ 0}.
• 𝛽 is a limit ordinal: Each 𝑓 ∈ Free(𝛽) is contained in some Free(𝛼) for 𝛼 < 𝛽

(recall what a coproduct is), and by the inductive hypothesis, {𝑛𝑏 | 𝑏 ∈ 𝛼, 𝑛𝑏 ≠ 0}
already generates 𝛼.

□

Though the proof is long, I want you to note that there was nothing particularly difficult in
it. The setup requires some background in set theory, but it is all straightforward if you are
familiar with it. Just by recalling the definition of a coproduct, the inductive cases where 𝛽
was a limit ordinal were trivial. The step 𝛽 ⇒ 𝛽 + 1 is the trickiest part in that it requires a
little thought. But still, it does not demand too much from you.

One last thing. We have not explicitly checked that these bases {𝑛𝑏 | 𝑏 ∈ 𝛽, 𝑛𝑏 ≠ 0} have
smaller or equal cardinality to 𝛽. But this is really obvious, and the proof was running long
enough as is, so we just note it now.

Exercise 4.43.  If you did not understand the proof due to a lack of a set theoretical
background, reconstruct it for free modules with a finite basis.

Now we turn our attention to finitely generated modules over a Principal Ideal Domain.
First we start with the free modules. Because these modules have finite rank, we can say
something a lot stronger than Theorem 4.42: not only can you say 𝑁  is free, there exists a
basis of 𝑁  that is closely related to some basis of 𝑀 .

Theorem 4.44 (Smith Normal Form).  If 𝑅 is a Principal Ideal Domain, 𝑀  is a free 𝑅
-module with finite rank 𝑘, and 𝑁 ≤ 𝑀  has rank 𝑛, then there is some basis
{𝑚1, …, 𝑚𝑘} of 𝑀  and elements

𝑟1 | 𝑟2 | … | 𝑟𝑛

in 𝑅 where 𝑟1𝑚1, …, 𝑟𝑛𝑚𝑛 is a basis of 𝑁 .

Furthermore, the 𝑟1, …, 𝑟𝑛 are unique up to multiplication by units. That is, regardless
of the basis {𝑚1, …, 𝑚𝑘}, there is no other way to construct a basis 𝑟1𝑚1, …, 𝑟𝑛𝑚𝑛 of
𝑁 .

We already know from Theorem 4.42 that 𝑁  has a basis. The important part is that we may
use a basis of 𝑀  to construct a basis of 𝑁  in Theorem 4.44.

If such a basis exists, then the inclusion map id : 𝑁 → 𝑀  can be represented as the matrix
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(
((
((
((
((
((
(𝑟1

0
⋮
0
⋮
0

0
𝑟2
⋮
0
⋮
0

…
…
⋱
…
⋱
…

0
0
⋮

𝑟𝑛
⋮
0 )

))
))
))
))
))
)

with bases {𝑟1𝑚1, …𝑟𝑛𝑚𝑛} for 𝑁  and {𝑚1, …, 𝑚𝑘} for 𝑀 . (If the ranks of 𝑁  and 𝑀  are
the same, then there are no extra zeroes below.) The converse is also true: if we show that
some change of basis leads to such a representation of id, then we are done.

We will also use the fact that every pair of elements in a Principal Ideal Domain has a
greatest common divisor.

Exercise 4.45.  If you have not already proved this yourself, do it now by showing that
𝑑 is a greatest common divisor of (𝑎, 𝑏) if (𝑑) = (𝑎, 𝑏) and 𝑑 ≠ 0.

Proof of Theorem 4.44.  Start with any bases of 𝑁  and 𝑀 , and take the matrix of
id : 𝑁 → 𝑀  under these bases.

Recall that on a matrix we may

• swapping rows/columns,
• multiplying a row/column by a unit,
• adding a multiple of some row/column to another row/column,

for these are precisely the operations that are invertible over modules. Row operations
represent a change of the basis in 𝑁 , and column operations represent a change of the
basis in 𝑀 .

First we want to show that we may get the greatest common divisor of all the entries
as an entry via changes in bases. It turns out all we need to do is get the greatest
common divisor of two entries in the same row/column. Here is how.

For entries (𝑎, 𝑏) and some greatest common divisor 𝑑 of 𝑎 and 𝑏, there are some
𝑥, 𝑦 ∈ 𝑅 such that 𝑥𝑑 = 𝑎 and 𝑦𝑑 = 𝑏. Since gcd(𝑥, 𝑦) = 1, there are some 𝑢, 𝑣 ∈ 𝑅
such that 𝑢𝑥 + 𝑣𝑦 = 1. Here is explicitly how you go about the transformation:

(𝑥
𝑦) → ( 𝑥

(𝑢 + 𝑣 − 1)𝑥 + 𝑦) → ( (𝑢 + 𝑣)𝑥
(𝑢 + 𝑣 − 1)𝑥 + 𝑦) → ((𝑢 + 𝑣)𝑥

𝑦 − 𝑥 ) → (𝑢𝑥 + 𝑣𝑦
𝑦 − 𝑥 )

and as 𝑢𝑥 + 𝑣𝑦 = 1, we concluded with the matrix (
1

𝑦−𝑥). Multiplying every matrix in
the process by 𝑑, we see how we may get the matrix (

𝑑
𝑑(𝑦−𝑥)) from (

𝑎
𝑏).

To get the greatest common divisor of the elements in a column, we “propagate
upwards”. Here is an example:

(
((
(𝑎

𝑏
𝑐)
))
) →

(
((
( 𝑎

gcd(𝑏, 𝑐)
? )

))
) →

(
((
(gcd(𝑎, 𝑏, 𝑐)

?
? )

))
)
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And here is how we get the gcd of all the elements:

(𝑎
⋮

?
⋮

…
⋱) → (𝑎

⋮
gcd(…) = 𝑑

⋮
…
⋱) → (gcd(𝑎, 𝑑)

⋮
…
⋱) → (gcd(𝑎, 𝑑, …) = 𝑟1

⋮
…
⋱)

Ignoring the first column, we get the greatest common divisor 𝑑 of the entries of the
rest of the matrix. Now we take the greatest common divisor of 𝑎 and 𝑑, and then we
find the greatest common divisor of the first row. We end up getting the greatest
common divisor of all the elements. (Formally, this process can be defined inductively.)

Now we may subtract the greatest common divisor 𝑟1 from the other entries in the first
row and column to get something in the form

(
((
(𝑟1

0
⋮

0
?
⋮

…
…
⋱)

))
)

After that, we may ignore the first row and column and find the Smith Normal Form of
the rest of the matrix. (Formally, we may perform induction on the size of the matrix.)
This gives us a matrix of the form

(
((
(𝑟1

0
⋮

0
𝑟2
⋮

…
…
⋱)

))
)

How do we know 𝑟1 | 𝑟2? Regardless of what matrix operations we perform, the
greatest common divisor of the entries never changes. Thus 𝑟1 | 𝑟2.

Furthermore, this line of reasoning shows the Smith Normal Form is unique. As any
change in basis may be achieved through row operations (or column operations), this
means 𝑟1 is fixed in any Smith Normal Form. Dropping the first element in the bases of
𝑁  and 𝑀  to generate a linear map between two smaller matrices, we see that 𝑟2 is
fixed for the same reason. So on and so forth.

(
((
(𝑟1

0
⋮

0
𝑟2
⋮

…
…
⋱)

))
) → (𝑟2

⋮
…
⋱) → …

□

Exercise 4.46.  We have not explicitly stated the base case for Theorem 4.44 in our
proof. State and prove the base case.

Exercise 4.47.  It is not immediately obvious that any change of basis may be
performed via row operations. Show this. More formally, given two bases {𝑒1, …, 𝑒𝑛}
and {𝑓1, …, 𝑓𝑛} of a free module over a Principal Ideal Domain, show that we may go
from the first basis to the second by

• multiplying elements by units,
• or adding some multiple of one element to another.
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(Hint: gcd(𝑒1, …, 𝑒𝑛) = gcd(𝑓1, …, 𝑓𝑛), and you should know how to get the gcd of the
elements of {𝑓1, …, 𝑓𝑛}.)

This proof also shows uniqueness of the 𝑟𝑖 in the original theorem statement. The Smith
Normal Form of any matrix is unique, and even though there are many matrices for
id : 𝑁 → 𝑀  with different bases, the Smith Normal Form of each of them must be the
same. (Otherwise, we may chain together changes of bases to find distinct Smith Normal
Forms, which is a contradiction.)

Why does Theorem 4.44 require 𝑀  to have a finite rank? We can see the matrix
manipulations in the proof require this. But a priori it is not obvious why the theorem must
fail on infinite dimensional 𝑀 . See https://math.stackexchange.com/questions/4967770/nice-
bases-for-submodules-of-infinite-free-modules-over-a-pid for an explanation.

Every finitely generated module over a Principal Ideal Domain, even if it is not free, can be
nicely decomposed into the direct sum of some very “simple” modules. This relies very
heavily on Theorem 4.44, so for the same reasons, the theorem requires that the module be
finitely generated.

Theorem 4.48 (Structure Theorem, Invariant Decomposition).  If 𝑅 is a Principal
Ideal Domain and 𝑀  is a finitely generated 𝑅-module, then there exist some 𝑛 ∈ ℕ
and 𝑑1 | 𝑑2 | … | 𝑑𝑚 which are not units in 𝑅 where

𝑀 ≅ 𝑅𝑛 ⊕ 𝑅
(𝑑1)

⊕ … ⊕ 𝑅
(𝑑𝑚)

.

Furthermore, this decomposition is unique: 𝑛 is fixed, 𝑚 is fixed, and each (𝑑𝑖) is fixed
(meaning each 𝑑𝑖 is fixed up to multiplication by a unit).

Proof of Theorem 4.48.  Suppose that 𝑀  is finitely generated by {𝑚1, …, 𝑚𝑛} ⊂ 𝑀 .
Then define a map 𝜑 : 𝑅𝑛 → 𝑀  where 𝜑(𝑟1, …, 𝑟𝑛) = 𝑟1𝑚1 + … + 𝑟𝑛𝑚𝑛. Since 𝜑 is
surjective, the First Isomorphism Theorem yields that

𝑀 ≅ 𝑅𝑛

ker 𝜑
.

Since ker 𝜑 ≤ 𝑅𝑛, Theorem 4.44 implies that there is some basis {𝑒1, …, 𝑒𝑛} of 𝑅𝑛 and
some 𝑑1 | … | 𝑑𝑘 in 𝑅 such that {𝑑1𝑒1, …, 𝑑𝑘𝑒𝑘} is a basis of ker 𝜑. Thus

𝑅𝑛

ker 𝜑
≅ (𝑒1) ⊕ … ⊕ (𝑒𝑛)

(𝑑1𝑒1) ⊕ … ⊕ (𝑑𝑘𝑒𝑘) ⊕ (0) ⊕ … ⊕ (0)

≅ (𝑒1)
(𝑑1𝑒1)

⊕ … ⊕ (𝑒𝑘)
(𝑑𝑘𝑒𝑘)

⊕ (𝑒𝑘+1) ⊕ … ⊕ (𝑒𝑛)

≅ 𝑅
(𝑑1)

⊕ … ⊕ 𝑅
(𝑑𝑘)

⊕ 𝑅𝑛−𝑘,

where we use Exercise 4.5 to decompose the quotient. This is of the desired form. □
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It is easy to show the decomposition is unique. The decomposition in Theorem 4.48 can be
related to the decomposition induced by Theorem 4.44,⁷ and because Theorem 4.44 induces
a unique decomposition, so does Theorem 4.48.

A useful corollary is the Primary Decomposition.

Theorem 4.49 (Structure Theorem, Primary Decomposition).  If 𝑅 is a Principal
Ideal Domain and 𝑀  is a finitely generated 𝑅-module, then there exist some 𝑛 ∈ ℕ,
prime 𝑝1, …, 𝑝𝑚 ∈ 𝑅 and positive exponents 𝑒1, …, 𝑒𝑚 where

𝑀 ≅ 𝑅𝑛 ⊕ 𝑅
(𝑝𝑒1

1 )
⊕ … 𝑅

(𝑝𝑒𝑚𝑚 )
.

Furthermore, this decomposition is unique: 𝑛 is fixed, 𝑚 is fixed, each 𝑒𝑖 is fixed, and
each (𝑝𝑖) is fixed (meaning each 𝑝𝑖 is fixed up to multiplication by a unit).

Proof of existence for Theorem 4.49.  To show such a decomposition exists, take a
decomposition

𝑀 ≅ 𝑅𝑛 ⊕ 𝑅
(𝑑1)

⊕ … ⊕ 𝑅
(𝑑𝑚)

from Theorem 4.48. Since 𝑅 being a Principal Ideal Domain implies it is also a Unique
Factorization Domain, each 𝑑𝑖 is of the form 𝑝𝑒1

1 …𝑝𝑒𝑘
𝑘 . And the Chinese Remainder

Theorem gives us that

𝑅
(𝑑𝑖)

≅ 𝑅
(𝑝𝑒1

1 )
⊕ … ⊕ 𝑅

(𝑝𝑒𝑘
𝑘 )

.

Apply this for each of the 𝑑𝑖 and you will get the desired decomposition. □

Uniqueness is not hard. The gist is that there is a canonical way to reverse this
decomposition, i.e. to take a decomposition from Theorem 4.49 and turn it into a
decomposition in the form of Theorem 4.48. Because the invariant decompositions are
unique, we will easily be able to conclude that the primary decomposition is too.

Proof of uniqueness for Theorem 4.49.  To be more precise, we write

𝑀 ≅ 𝑅𝑛 ⊕ [𝑅/(𝑝𝑒1,1
1 ) ⊕ … ⊕ 𝑅/(𝑝𝑒1,𝑚

1 )] ⊕ … ⊕ [𝑅/(𝑝𝑒𝑛,1
𝑛 ) ⊕ … ⊕ 𝑅/(𝑝𝑒𝑛,𝑚

𝑛 )]

where each of the 𝑝𝑖 are distinct⁸ and the exponents are written in increasing order, i.e.
𝑗 < 𝑘 ⟹ 𝑒𝑖,𝑗 ≤ 𝑒𝑖,𝑘. Here we permit some of the exponents to be 0 so that the
number of exponents for each prime is the same, with the added stipulation that there

⁷This is literally how the proof works.
⁸When we say primes 𝑝 and 𝑞 are distinct, we precisely mean that there is no unit 𝑢 where 𝑝𝑢 = 𝑞.

Equivalently, we mean that (𝑝) ≠ (𝑞).
⁹This ensures that we do not unnecessarily pad exponents of 0 to our original decomposition, which is

crucial to ensure the 𝑑𝑗 we define are not units.
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must be some 𝑖 such that 𝑒𝑖,𝑗 ≠ 0 for all 𝑗.⁹ Say that such a decomposition is a padded
primary decomposition.

Now for each 1 ≤ 𝑗 ≤ 𝑚, we define 𝑑𝑗 to be

𝑅/(𝑝𝑒1,𝑗
𝑖 ) ⊕ … ⊕ 𝑅/(𝑝𝑒𝑛,𝑗

𝑛 ).

It is easy to check that 𝑑1 | … | 𝑑𝑚, each of the 𝑑𝑗 is not a unit, and
𝑀 ≅ 𝑅𝑛 ⊕ 𝑅

(𝑑1) ⊕ … ⊕ 𝑅
(𝑑𝑚) , so this is a valid invariant decomposition.

Now note two distinct padded primary decompositions would produce distinct
invariant decompositions, and by Theorem 4.48, we know that distinct invariant
decompositions cannot be isomorphic. So the padded primary decomposition must be
unique. From here it is incredibly easy to conclude that the primary decomposition
itself must be unique as well. □

Both decompositions are useful, but in this primer we will only show an example using the
primary decomposition.

4.4.1 The Structure Theorem for Finitely Generated Abelian Groups

Note that an abelian group 𝐺 can be thought of as a ℤ-module as follows: the elements of
the module are the elements of 𝐺, and for every 𝑧 ∈ ℤ and 𝑔 ∈ 𝐺, we have 𝑧 ⋅ 𝑔 = 𝑔𝑧.

Applying Theorem 4.49 immediately yields that if 𝐺 is a finitely generated abelian group,
there exist unique 𝑛 ∈ ℕ, prime numbers 𝑝1, …, 𝑝𝑚 and positive exponents 𝑒1, …, 𝑒𝑚 where

𝐺 ≅ ℤ𝑛 ⊕ ℤ
(𝑝𝑒1

1 )
⊕ … ⊕ ℤ

(𝑝𝑒𝑚𝑚 )
.

We may also find a unique invariant decomposition of 𝐺, but this is not used as often.

4.4.2 The Jordan Canonical Form

For this section, you ought to know what an invariant subspace and block matrix are.

Consider an algebraically closed field 𝔽 and a finite-dimensional vector space 𝑉  over 𝔽. Not
every linear map 𝑇 : 𝑉 → 𝑉  admits a basis of eigenvectors. In other words, there is not
always some basis ℬ where the matrix ℳ of 𝑇  with basis ℬ is diagonal.

The closest we can get is the Jordan Canonical Form: there is some basis ℬ such that ℳ
is of the form

(
((
(𝐵1

⋱
𝐵𝑛)

))
)

where each 𝐵𝑖 is a block matrix of the form
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(
((
((
((

𝜆𝑖 1
𝜆𝑖 ⋱

⋱ 1
𝜆𝑖)

))
))
))

where the 𝜆𝑖 are the eigenvalues of ℳ which lie on the main diagonal, and the 1’s lie
directly above the main diagonal of 𝐵𝑖. We call these Jordan blocks. Furthermore, up to
permutation of the 𝐵𝑖, the Jordan Canonical Form is unique.

Concretely, an example of a matrix in Jordan Canonical Form is

(
((
((
((
((
((
(𝜆1 1

𝜆1 1
𝜆1

𝜆2 1
𝜆2

𝜆3)
))
))
))
))
))
)

where 𝜆1, 𝜆2, and 𝜆3 are not necessarily distinct.

To see why such a matrix always exists, we need to make a preliminary observation.

Theorem 4.50.  Given any ring 𝑅, there is a one-to-one correspondence between the
𝑅[𝑥]-modules and 𝑅-modules 𝑀  with a linear transformation 𝑇 : 𝑀 → 𝑀 .

Proof of Theorem 4.50.  For every 𝑀  and 𝑇 : 𝑀 → 𝑀 , define 𝑀  to be an 𝑅[𝑥]-module
where for all 𝑚 ∈ 𝑀 , 𝑥 ⋅ 𝑚 = 𝑇(𝑚).

(This is enough to specify how 𝑇  behaves by the distributive property.) □

I leave it to you to verify this correspondence is indeed bijective.

Now we show the Jordan Canonical Form exists. We apply Theorem 4.49 and note that as an
𝔽[𝑥]-module,

𝑉 ≅ 𝔽[𝑥]
(𝑥 − 𝜆1)

𝑒1
⊕ … 𝔽[𝑥]

(𝑥 − 𝜆𝑚)𝑒𝑚
.10

By definition, when we apply 𝑇  to some 𝑣 ∈ 𝑉 , we are multiplying each of the direct
summands (which are all polynomials) by the polynomial symbol 𝑥. This means that each

𝔽[𝑥]
(𝑥−𝜆𝑖)

𝑒𝑖  is an invariant subspace, and thus we may consider the restriction of 𝑇  to any of
these subspaces.

For each 𝜆𝑖, consider the basis

¹⁰Here we leverage the algebraicity of 𝔽 to conclude that every prime ideal is generated by a linear
polynomial. And because 𝑉  is finite-dimensional, there are no copies of 𝔽[𝑥] in the decomposition, for 𝔽[𝑥]
is an infinite-dimensional vector space over 𝑉 .
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(𝑥 − 𝜆𝑖)
𝑒𝑖−1, …, (𝑥 − 𝜆𝑖)

0 ∈ 𝔽[𝑥]
(𝑥 − 𝜆𝑖)

𝑒𝑖
.

As 𝑥 = 𝜆 + (𝑥 − 𝜆), we have that for each 0 ≤ 𝑘 < 𝑒𝑖,

𝑥 ⋅ (𝑥 − 𝜆𝑖)
𝑘 = 𝜆 ⋅ (𝑥 − 𝜆𝑖)

𝑘 + (𝑥 − 𝜆𝑖) ⋅ (𝑥 − 𝜆𝑖)
𝑘

= 𝜆(𝑥 − 𝜆𝑖)
𝑘 + (𝑥 − 𝜆𝑖)

𝑘+1.

Note that when 𝑘 = 𝑒𝑖 − 1, we have (𝑥 − 𝜆𝑖)
𝑘+1 = 0 as we quotient by (𝑥 − 𝜆)𝑒

𝑖 .

So the matrix of 𝑇  (restricted to this subspace) with this basis is

(
((
((
((

𝜆𝑖 1
𝜆𝑖 ⋱

⋱ 1
𝜆𝑖)

))
))
))

which is a Jordan block, exactly as desired.

Combining the Jordan blocks gives us the Jordan Canonical Form. And because the
decomposition of 𝑉  as an 𝔽[𝑥]-module is unique, so is the Jordan Canonical Form (up to
permutation of the blocks).
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Chapter 5

Fields

Rather than studying fields through the lens of linear transformations, we will develop the
theory of field extensions. A field extension is not complicated: it is just some fields 𝐹  and
𝐾 where 𝐹 ≤ 𝐾 . We will be able to study the Galois group Aut𝐹 (𝐾), which consists of the
field automorphisms on 𝐾 that fix 𝐹 .

We will be able to connect some group theoretic notions to field theory as well. Certain field
extensions 𝐾/𝐹  are Galois, which induces a one-to-one correspondence between the
normal extensions 𝐻/𝐹  where 𝐹 ≤ 𝐻 ≤ 𝐾 and the normal subgroups of Aut𝐹 (𝐾). And
the solvability of a polynomial 𝑓 ∈ 𝐹 [𝑥] over a radical extension of 𝐹  is directly related to
the solvability of the Galois group of 𝑓 .¹

5.1 Basics of Field Extensions

First we define two preliminary notions.

Definition 5.1 (Characteristic of a Field).  The characteristic of field 𝐹  is defined

to be the smallest integer 𝑝 such that 
1 + … + 1⏟⏟⏟⏟⏟

𝑝 copies

= 0
 if such a 𝑝 exists, and 0 otherwise.

For our convenience, we denote 
1 + … + 1⏟⏟⏟⏟⏟

𝑛 copies  as 𝑛𝐹  from now on.

As the letter 𝑝 suggests, the characteristic of a field is either 0 or prime. For
(𝑚𝑛)𝐹 = 𝑚𝐹 𝑛𝐹  by the distributive property, and if (𝑚𝑛)𝐹 = 0 then one of 𝑚𝐹  or 𝑛𝐹
must be 0.² And by definition, 1𝐹 = 1 ≠ 0.

For example, ℚ has characteristic 0 and 𝔽𝑝 has characteristic 𝑝. (We denote the field ℤ/𝑝ℤ
as 𝔽𝑝.)

Example 5.2.  We are used to infinite fields like ℝ having characteristic 0 and finite
fields like 𝔽𝑝𝑛  having prime characteristic 𝑝. These tend to be the well-behaved fields
(we will see why when we discuss separability). However, there are also slightly
unorthodox infinite fields with prime characteristic 𝑝.

For example, the field 𝔽𝑝(𝑥)³ is infinite and has characteristic 𝑝.

¹To define the Galois Group of a polynomial, we need the notion of a splitting field which we will develop
later. But very informally, it is the group of permutations of the roots of 𝑓  that fix the base field 𝐹 .

²Recall that fields are integral domains.
³This is the field of fractions of the polynomial ring 𝔽𝑝[𝑥], and its elements are of the form 𝑓𝑔  where 𝑓  and

𝑔 are polynomials in 𝔽𝑝.
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Definition 5.3 (Prime Subfield).  The prime subfield of a field 𝐹  is the smallest
subfield of 𝐹 . It is also the subfield generated by 1.

The prime subfield of 𝐹  is isomorphic to ℚ when the characteristic of 𝐹  is 0, and it is
isomorphic to 𝔽𝑝 when the characteristic of 𝐹  is a prime 𝑝.

Definition 5.4 (Field Extension).  If a field 𝐹  is contained by another field 𝐾 , we say
that 𝐾 is an extension of 𝐹 . We denote this relation by writing “𝐾/𝐹  is a field
extension”.

Somewhat confusingly, the / does not denote a quotient. It merely instantiates fields 𝐹  and
𝐾 and further specifies that 𝐹 ≤ 𝐾 .

Definition 5.5.  The degree of a field extension 𝐾/𝐹  is the dimension of 𝐾 as a
vector space over 𝐹 . We denote this as [𝐾 : 𝐹 ].

The degrees of field extensions are multiplicative. That is, if 𝐹 ≤ 𝐻 ≤ 𝐾 , we can use any
two of [𝐻 : 𝐹 ], [𝐾 : 𝐻], and [𝐾 : 𝐹 ] to determine the third.

Theorem 5.6.  Given fields 𝐹 ≤ 𝐻 ≤ 𝐾 ,

[𝐾 : 𝐹 ] = [𝐾 : 𝐻][𝐻 : 𝐹 ].

Note Theorem 5.6 holds whether the degrees of the extensions are finite or infinite. If the
degrees of the extensions are infinite, then Theorem 5.6 is a statement about cardinal
arithmetic (a quite trivial one at that).

Proof sketch of Theorem 5.6, finite case.  Suppose that [𝐾 : 𝐻] = 𝑚 and [𝐻 : 𝐹 ] = 𝑛 for
𝑚, 𝑛 ∈ ℕ. Further suppose that 𝛼1, …, 𝛼𝑚 is a basis of 𝐾 over 𝐻  and 𝛽1, …, 𝛽𝑛 is a
basis of 𝐻  over 𝐹 . Then it is enough to check that the set

{𝛼𝑖𝛽𝑗 | 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}

is a basis of 𝐾 over 𝐹 . □

The infinite case is practically identical to the finite case.

5.2 Algebraic and Splitting Field Extensions

We define the notion of an algebraic extension and use it to develop ideas that will be useful
for Galois Theory, such as algebraic closures, separable extensions, and splitting fields of
polynomials.
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Definition 5.7 (Algebraic Element).  Consider a field extension 𝐾/𝐹  and an element
𝑎 ∈ 𝐾 . We say 𝑎 is algebraic over 𝐹  if there exists a polynomial 𝑝(𝑥) ∈ 𝐹 [𝑥] such that
𝑎 is a root of 𝑝(𝑥).

If an element 𝑎 ∈ 𝐾 is algebraic, we may identify it with a unique minimal polynomial in
𝐹[𝑥].

Theorem 5.8 (Minimal Polynomial).  For algebraic 𝑎 ∈ 𝐾 , there is a unique
irreducible monic polynomial 𝑚𝑎(𝑥) ∈ 𝐹 [𝑥] which has 𝑎 as a root.

Furthermore, for every 𝑝(𝑥) ∈ 𝐹 [𝑥] with 𝑎 as a root, deg 𝑚𝑎(𝑥) ≤ deg 𝑝(𝑥). So 𝑚𝑎(𝑥)
is minimal in the sense that no polynomial with smaller degree has 𝑎 as a root.

To be clear, when I say 𝑚𝑎(𝑥) is irreducible, it is irreducible over 𝐹 .

Proof of Theorem 5.8.  Define 𝑚𝑎(𝑥) to be a polynomial in 𝐹[𝑥] with minimal degree.⁴ It
is utterly trivial to make it monic. If it were reducible in 𝐹[𝑥], then there are some
polynomials 𝑓, 𝑔 ∈ 𝐹 [𝑥] with positive degree such that 𝑓𝑔 = 𝑚𝑎. Because 𝐹[𝑥] is an
integral domain, we know that 𝑓(𝑎)𝑔(𝑎) = 0 implies at least one of 𝑓(𝑎) or 𝑔(𝑎) is 0,
contradicting the minimality of deg 𝑚𝑎.

Now we just need to show 𝑚𝑎(𝑥) is unique. Presume not; suppose there is some
irreducible monic polynomial 𝑓 ∈ 𝐹 [𝑥] that is distinct from 𝑚𝑎(𝑥). Since
deg 𝑓 ≥ deg 𝑚𝑎 by the minimality of deg 𝑚𝑎, the Euclidean Algorithm says that there
are polynomials 𝑔, 𝑟 ∈ 𝐹 [𝑥] where

𝑚𝑎𝑔 + 𝑟 = 𝑓 and deg 𝑟 < deg 𝑚𝑎,

and since 𝑟(𝑎) = 𝑓(𝑎) − 𝑚𝑎(𝑎)𝑔(𝑎) = 0, this contradicts the minimality of deg 𝑚𝑎. □

Exercise 5.9.  Show that in an extension 𝐾/𝐹 , if 𝑎 ∈ 𝐾 is a root of 𝑓 ∈ 𝐹 [𝑥] then 𝑚𝑎
divides 𝑓 .

There are some interesting results that the study of minimal polynomials yields. We will lay
the groundwork to prove these results right now.

Denote 𝐹(𝑎) as the subfield of 𝐾 generated by 𝐹  and 𝑎. (Informally, 𝐹(𝑎) is the result of
adding 𝑎 to 𝐹 , and then adding just enough elements to ensure that 𝐹 ∪ {𝑎} remains a
field.)

Now consider the homomorphism 𝜑 : 𝐹[𝑥]
(𝑚𝑎(𝑥)) → 𝐹(𝑎) where 𝜑 : 𝑓(𝑥) ↦ 𝑓(𝑎).⁵ Because

𝑚𝑎(𝑥) is irreducible (and in a Principal Ideal Domain, irreducibles are primes), the quotient
𝐹[𝑥]

(𝑚𝑎(𝑥))  is a field. So im 𝜑 is a field, and since 𝜑 maps the constant 𝑎 to itself in 𝐹(𝑎), we
must have im 𝜑 = 𝐹(𝑎).

⁴We do not yet know that 𝑚𝑎 is unique, so we just pick any such polynomial.
⁵This map is representation invariant because 𝑚𝑎(𝑥) = 0, so it is genuinely well-defined.
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By virtue of the quotient, this map is injective (every polynomial 𝑝 ∈ 𝐹 [𝑥] with 𝑎 as a root
is divisible by 𝑚𝑎(𝑥); prove this yourself). So 𝜑 is an isomorphism as desired. In other
words,

𝐹[𝑥]
(𝑚𝑎(𝑥))

≅ 𝐹(𝑎).

In particular, this implies

[𝐹 (𝑎) : 𝐹 ] = deg 𝑚𝑎(𝑥).

This is a fact that will be very useful when we wish to study the intermediate fields of 𝐹(𝑎)
for some given 𝑎. For example, we may wish to study the intermediate fields of ℝ(𝜁), where
𝜁 is a non-trivial fifth root of unity. We may see that as [ℝ(𝜁) : ℝ] = 5, there must not be
any intermediate fields between ℝ and ℝ(𝜁) as 5 is prime. (Recall Theorem 5.6.)

To continue this discussion we will need to first define an algebraic extension.

Definition 5.10 (Algebraic Extension).  A field extension 𝐾/𝐹  is algebraic if every
𝑎 ∈ 𝐾 is the root of some polynomial 𝑝(𝑥) ∈ 𝐹 [𝑥].

In other words, 𝐾/𝐹  is algebraic if every element in 𝐾 is algebraic over 𝐹 .

In this argument we have only used the fact that 𝑚𝑎 is irreducible. Indeed, for any
irreducible 𝑓 ∈ 𝐹 [𝑥], the quotient 𝐹[𝑥]/(𝑓(𝑥)) is a field and 𝑥 ∈ 𝐹[𝑥]/(𝑓(𝑥)) is a root of 𝑓 .

There is an obvious embedding 𝜑 : 𝐹 → 𝐹[𝑥]/(𝑓(𝑥)), and since 𝐹 ≅ 𝜑(𝐹), there is an
extension 𝐾/𝐹  with an isomorphism 𝐾 ≅ 𝐹[𝑥]/(𝑓(𝑥)) which extends 𝜑. Since 𝑓  has a root
in 𝐹[𝑥]/(𝑓(𝑥)), it does in 𝐾 as well.

Suppose for some 𝑎 ∈ 𝐾 that 𝑓(𝑎) = 0. Then by definition 𝑓  is the minimal polynomial of 𝑎
in 𝐹 , so 𝐹[𝑥]

𝑚𝑎(𝑥) ≅ 𝐹(𝑎), and 𝐹(𝑎) is an algebraic extension of 𝐹 .

Exercise 5.11.  Verify that 𝐹(𝑎) is indeed algebraic over 𝐹 . It is enough to show that if
𝑎, 𝑏 ∈ 𝐾 are algebraic, then

• 𝑎 + 𝑏 is algebraic;
• 𝑎𝑏 is algebraic;
• 1

𝑎  is algebraic.

To do this, suppose 𝑓, 𝑔 ∈ 𝐹 [𝑥] where 𝑓(𝑎) = 0 and 𝑔(𝑎) = 0. Explicitly construct
polynomials with 𝑎 + 𝑏, 𝑎𝑏, and 1

𝑎  as a root.

We summarize this discussion with a theorem.
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Theorem 5.12.  Suppose 𝐾/𝐹  is a field extension. If 𝑎 ∈ 𝐾 is algebraic in 𝐹 , then

𝐹[𝑥]
(𝑚𝑎(𝑥))

≅ 𝐹(𝑎) which implies [𝐹 (𝑎) : 𝐹 ] = deg 𝑚𝑎.

Also, given a field 𝐹  and irreducible 𝑓 ∈ 𝐹 [𝑥], there is an algebraic extension 𝐾/𝐹
such that

𝐹[𝑥]
(𝑓(𝑥))

≅ 𝐾 which implies [𝐾 : 𝐹 ] = deg 𝑓

and 𝑓  has a root in 𝐾 .

Algebraic extensions always exist: a very boring example is 𝐹/𝐹 . (Sometimes it is the only
example!) And we just showed that when 𝐹  contains an irreducible polynomial 𝑓  with
deg 𝑓 ≥ 2, 𝐹[𝑥]/(𝑓(𝑥)) is isomorphic to a non-trivial algebraic extension 𝐾 of 𝐹 . But
perhaps more surprisingly, algebraic closures always exist too. And we will leverage
Theorem 5.12 to show this.

Definition 5.13 (Algebraically Closed Field).  We say 𝐹  is an algebraically closed
field if every non-constant polynomial 𝑝 ∈ 𝐹 [𝑥] is a root in 𝐹 .

A field 𝐹  being algebraically closed is equivalent to every polynomial 𝑓 ∈ 𝐹 [𝑥] with
deg 𝑓 ≥ 2 being reducible. Alternatively no irreducible polynomials of degree ≥ 2 exist.

Exercise 5.14.  Suppose 𝐹  is an algebraically closed field. Show that 𝐹/𝐹  is the only
possible algebraic extension of 𝐹 .

Definition 5.15.  An algebraic closure of 𝐹  is an algebraic extension 𝐹/𝐹  where 𝐹
is algebraically closed.

Usually we identify 𝐹  as the algebraic closure of 𝐹  rather than the extension 𝐹/𝐹 .

Theorem 5.16.  Every field 𝐹  has an algebraic closure, and any two algebraic closures
of 𝐹  are equivalent up to an isomorphism that fixes 𝐹 .

This will allow us to refer to the algebraic closure of 𝐹 , because it is essentially unique. We
prove this via Zorn’s Lemma, which says that there is a maximal element in every non-
empty partially ordered set where every increasing chain is bounded from above.⁶

Informally, we would like to take the collection of algebraic extensions 𝐾/𝐹  endowed with
the order ⊆ and apply Zorn’s Lemma. Once we retrieve a maximal element 𝐹 , then we can

⁶It is equivalent to the Axiom of Choice under ZF.
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show that the existence of an irreducible polynomial 𝑓 ∈ 𝐹 [𝑥] with deg 𝑓 ≥ 2 implies the
existence of a strict algebraic extension of 𝐹  which contradicts its maximality.

Unfortunately, this collection is a proper class (i.e. it is not a set) for an utterly idiotic
reason: there are many isomorphic yet set-theoretically distinct (algebraic) extensions of 𝐹 .
But so long as we can remove these stupid isomorphic copies, this method will suffice. This
is why we restrict the algebraic extensions to those in some set 𝑆 in the proof that follows.

Proof of existence for Theorem 5.16.  Construct a set 𝑆 ⊃ 𝐹  where |𝑆| > max(|𝐹 |, |ℕ|).
Define

ℱ = {𝐾 ⊂ 𝑆 : 𝐾/𝐹 is an algebraic extension}

and endow it with the relation ⊆ to get the partially ordered set {ℱ, ⊆}. Note that
Zorn’s Lemma applies because the union of a chain of algebraic extensions is itself an
algebraic extension.⁷

So take a maximal element 𝐹  of ℱ. For the sake of contradiction, assume that 𝐹  is not
an algebraic closure of 𝐹 . Then there is a polynomial 𝑓 ∈ 𝐹 [𝑥] with no roots and
𝐹/(𝑓(𝑥)) is isomorphic to a proper algebraic extension 𝐾 of 𝐹 . We want to show
there is an isomorphism from 𝐾 to some field in 𝑆 fixing 𝐹 . To do this, note

|𝐾 \ 𝐹| ≤ |𝐾| = max(|𝐹 |, |𝑁|) < |𝑆| = |𝑆 \ 𝐹|,

implying there is an injection 𝜄 : 𝐾 \ 𝐹 → 𝑆 \ 𝐹 . Now consider id𝐹 : 𝐹 → 𝐹  and note
𝜄 ∪ id𝐹  is an injection fixing 𝐹 . Now endow the correct algebraic structure on
im(𝜄 ∪ id𝐹 ) ⊂ 𝑆 and the rest is obvious. □

As the notation in the proof suggests, we will denote the algebraic closure as 𝐹 .

Exercise 5.17.  Verify that if 𝐾/𝐹  is algebraic, then |𝐾| = max(|𝐹 |, |ℕ|). Hint: for
each 𝑓 ∈ 𝔽, define 𝑆𝑓  to be the set of roots of 𝑓  in 𝐾 . Note that

𝐾 = ⋃
𝑓∈𝐹[𝑥]

𝑆𝑓

as 𝐾/𝐹  is algebraic. How large is each 𝑆𝑓 , and how many 𝑓 ∈ 𝐹 [𝑥] are there?

Exercise 5.18.  Show that if 𝐾/𝐹  is an algebraic extension and 𝐾 is an algebraic
closure of 𝐾 , it is an algebraic closure of 𝐹  as well. To do this, show that algebraicity is
transitive, that is, if 𝐻/𝐹  and 𝐾/𝐻  are algebraic extensions, then 𝐾/𝐹  is algebraic
too.

The uniqueness of the algebraic closure is not so obvious, but the proof ideas have all been
seen before in the proof of existence.

Proof of uniqueness for Theorem 5.16.  Suppose 𝐾 and 𝐿 are both algebraic closures of
𝐹 . Then define

Φ = {𝜑 : 𝐻 → 𝐿 | 𝐹 ≤ 𝐻 ≤ 𝐾 and 𝜑 ↾ 𝐹 = id}.

⁷To be pedantic, we ought to note ℱ is non-empty as 𝐹/𝐹  is algebraic.
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In other words, Φ is the family of subfield homomorphisms from 𝐾 to 𝐿 which fix 𝐹 .

Now we define a natural partial ordering (Φ, ⊆), where 𝜑1 ⊆ 𝜑2 if 𝜑1 is the restriction
of 𝜑2 on a smaller subfield.⁸ Note that (Φ, ⊆) satisfies the conditions for Zorn’s
Lemma, because the union of any chain is also a subfield homomorphism from 𝐾 to 𝐿
which fixes 𝐹 .⁹

So there is some maximal element 𝜑 : 𝐻 → 𝐿. If 𝐻 ≠ 𝐾 , then there is some
𝑎 ∈ 𝐾 \ 𝐻 , which means that the field 𝐻(𝑎) is a strict superset of 𝐻 . Now take the
minimal polynomial 𝑚𝑎 ∈ 𝐹[𝑥] of 𝑎, and find some root 𝑏 ∈ 𝐿 of 𝑚𝑎. Then there is an
extension of 𝜑 with domain 𝐻(𝑎) where 𝜑(𝑎) = 𝑏, contradicting the maximality of 𝜑.
So we may conclude 𝜑 is from 𝐾 to 𝐿.

We show 𝜑 is injective by showing its kernel is trivial. Suppose that 𝜑(𝑎) = 0 for
𝑎 ∈ 𝐾; we want to show that 𝑎 = 0. For every 𝑓 ∈ 𝐹 [𝑥], we have 𝜑(𝑓(𝑎)) = 𝑓(𝜑(𝑎))
as 𝜑 is a homomorphism which fixes 𝐹 . Suppose for the sake of contradiction
𝑎 ∈ 𝐾 \ 𝐹 . Then take the minimal polynomial 𝑚𝑎 ∈ 𝐹[𝑥] and note

0 = 𝜑(𝑚𝑎(𝑎)) = 𝑚𝑎(𝜑(𝑎)) = 𝑚𝑎(0).

But 0 being a root of 𝑚𝑎 contradicts that 𝑚𝑎 is irreducible. So if 𝜑(𝑎) = 0 we have
𝑎 ∈ 𝐹 , and as 𝜑 fixes 𝐹  this implies 𝑎 = 0.

We use a similar argument to show 𝜑 is surjective. For any 𝑏 ∈ 𝐿 there is some
𝑓 ∈ 𝐹 [𝑥] with 𝑏 as a root. Since 𝜑(𝑓(𝑎)) = 𝑓(𝜑(𝑎)) for all 𝑎 ∈ 𝐾 , every root 𝑎 ∈ 𝐾 of
𝑓  corresponds to a root 𝜑(𝑎) ∈ 𝐿 of 𝑓 . Because the degree of 𝑓  doesn’t change whether
it is interpreted in 𝐾 of 𝐿, the only roots of 𝑓  in 𝐿 are of the form 𝜑(𝑎) where 𝑎 ∈ 𝐾 is
a root of 𝑓 .

Now as 𝑏 ∈ 𝐿 is a root of 𝑓 , there is some 𝑎 ∈ 𝐾 (which is a root of 𝑓 ) such that
𝑓(𝑎) = 𝑏. □

We will show a few more results related to Theorem 5.12. First we show a natural converse
to the theorem.

Theorem 5.19.  Suppose 𝐾/𝐹  is a field extension and 𝑎 ∈ 𝐾 . Then 𝑎 is algebraic over
𝐹  if and only if [𝐹 (𝑎) : 𝐹 ] is finite.

We have already shown that 𝑎 algebraic implies [𝐹 (𝑎) : 𝐹 ] is finite so we only need to show
the other direction.

Proof of Theorem 5.19.  If [𝐹 (𝑎) : 𝐹 ] = 𝑛 for some 𝑛 ∈ ℕ then the set {0, 𝑎, …, 𝑎𝑛} is
linearly dependent in 𝐹  as it has more than 𝑛 elements. Thus there is a polynomial in
𝐹[𝑥] of degree at most 𝑛 with 𝑎 as a root. □

Furthermore, in this case there is no polynomial of degree less than 𝑛 with 𝑎 as a root,
because we know the degree of the minimal polynomial 𝑚𝑎(𝑥) is equal to [𝐹 (𝑎) : 𝐹 ].

⁸The symbol ⊆ can be interpreted set theoretically if the functions 𝜑1 and 𝜑2 are thought of as sets.
⁹To be pedantic again, we ought to note Φ is non-empty as it contains id : 𝐹 → 𝐿.
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As a corollary, if 𝐾/𝐹  is a field extension where [𝐾 : 𝐹 ] is finite, then 𝐾/𝐹  is algebraic.
This is because for every 𝑎 ∈ 𝐾 , [𝐹 (𝑎) : 𝐹 ] is finite.

Next we show that given a polynomial 𝑓 ∈ 𝐹 [𝑥], there is a unique (up to isomorphism)
minimal extension 𝐾/𝐹  where 𝑓  factors completely in 𝐾 . In this case we say that 𝐾 is a
splitting field extension of 𝐹  over 𝑓 . Furthermore, if 𝑓  factors completely in 𝐾 (i.e. into
linear factors), we will say that 𝑓  splits over 𝐾 .

When we say 𝐾 is minimal, we precisely mean that for any 𝐹 ≤ 𝐻 < 𝐾 , 𝑓  does not split
over 𝐻 . Note this is a trivial statement if 𝑓  splits over 𝐹 .

Theorem 5.20 (Splitting Fields Exist).  Suppose 𝑓 ∈ 𝐹 [𝑥]. Then there is a splitting
field extension 𝐾/𝐹  for 𝑓 . Furthermore, it is unique up to isomorphism.

The proof is a trivial consequence of the existence of an algebraic closure.

Proof of Theorem 5.20.  Let 𝐹  be the closure of 𝐹  and define

ℱ = {𝐾 ≤ 𝐹 | 𝑓 splits over 𝐾}.

Note 𝑓  splits over ⋂ ℱ and it is obviously minimal.

Uniqueness is easy too. Suppose 𝐾/𝐹  and 𝐿/𝐹  are splitting field extensions. Then 𝐾
and 𝐿 are closures of 𝐹  and there is an isomorphism 𝜑 : 𝐾 → 𝐿 fixing 𝐹 . Field
isomorphisms preserve subfield structure and 𝜑 preserves algebraic properties of 𝐹  as
it fixes 𝐹 .

Concretely, this means that if 𝑓  splits over 𝐻 ≤ 𝐾 , it splits over 𝜑(𝐻) ≤ 𝐿 as well.
Because 𝜑 is a bijection, the converse holds as well. And since 𝐾 is a splitting field, it is
the intersection of all the subfields of 𝐾 which 𝑓  splits over. Likewise for 𝐿. Thus

𝐾 = ⋂{𝐻 ≤ 𝐾 | 𝑓 splits over 𝐻} ≅ ⋂{𝐻 ≤ 𝐿 | 𝑓 splits over 𝐻} = 𝐿.

□

Exercise 5.21.  Use the exact same reasoning to show that if 𝑓  splits over 𝐾/𝐹  then
there is a unique 𝐹 ≤ 𝐻 ≤ 𝐾 such that 𝐻/𝐹  is a splitting field extension.

Exercise 5.22.  Show that if 𝐾/𝐹  is a splitting field extension for a polynomial
𝑓 ∈ 𝐹 [𝑥], then [𝐾 : 𝐹 ] | (deg 𝑓)! Hint: by Theorem 5.6, it is enough to construct some
extension 𝐿/𝐹  which 𝑓  splits over where [𝐿 : 𝐹 ] | (deg 𝑓)!¹⁰

We may define the splitting field of a family of polynomials in a similar way.

¹⁰It turns out that the obvious extension you need to construct is a splitting field extension; we see this
very soon. But for the purposes of this exercise, it is easier to not worry about the minimality of this
extension.
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Definition 5.23 (Splitting Field Extension).  A splitting field extension of a family
of polynomials {𝑓𝑖 | 𝑖 ∈ 𝐼} ⊂ 𝐹[𝑥] is a minimal extension 𝐾/𝐹  where every 𝑓𝑖 splits
over 𝐾 .

Such an extension exists and is unique for the exact same reasons as Theorem 5.20.
Similarly Exercise 5.21 still holds as well.

There is actually an algorithm to produce a splitting field extension for a finite family of
polynomials. We construct a series of extensions 𝐹 = 𝐾0 ≤ 𝐾1 ≤ … ≤ 𝐾𝑛 as follows:

• If the polynomials split in 𝐾𝑖, we are done.
• If an extension 𝐾𝑖+1/𝐾𝑖 splits over every factor of 𝑓 ∈ 𝐾𝑖[𝑥], then it splits over 𝑓 .

Therefore, we factor each polynomial in the family into its irreducible components.
• Now we have a family of irreducibles 𝑓1, …, 𝑓𝑛 ∈ 𝐾𝑖[𝑥] which we want to split in an

extension 𝐾𝑖+1/𝐾𝑖.
• Select some 𝑓  and take 𝐾𝑖+1 ≅ 𝐾𝑖[𝑥]

(𝑓(𝑥)) .

Denote our final extension 𝐾𝑛 as 𝐾 . This is the obvious way to construct an extension
𝐾/𝐹  where 𝑓  splits over 𝐾 . But is it minimal? Yes.

For 𝑆 ⊂ 𝐾 , we denote 𝐹(𝑆) to be the subfield of 𝐾 generated by 𝐹 ∪ 𝑆. Note that
𝐹(𝑎, 𝑏) = (𝐹(𝑎))(𝑏) for 𝑎, 𝑏 ∈ 𝐾 . And since 𝐾𝑖+1 = 𝐾𝑖(𝑎𝑖) for some 𝑎𝑖 ∈ 𝐾 , we may
conclude that

𝐾 = 𝐹(𝑎1, …, 𝑎𝑛).

This means 𝐾/𝐹  is a minimal extension, as the smallest subfield of 𝐾 containing 𝐹  and the
roots 𝑎1, …, 𝑎𝑛 of the family of polynomials is 𝐹(𝑎1, …, 𝑎𝑛).

5.3 Separable Extensions

For a field 𝐹  we develop the notion of a separable polynomial, and we develop the notion
of separable extensions 𝐾/𝐹  in which every minimal polynomial is separable.
Separability is one of the two conditions we will use to characterize Galois extensions, the
other being normality.

Definition 5.24 (Separable Polynomial).  A polynomial 𝑓 ∈ 𝐹 [𝑥] is separable if it
has no multiple roots in a splitting field extension 𝐾/𝐹 .

Because splitting fields are isomorphic, it does not matter which splitting field extension we
take.

Note that 𝑓  having no repeated roots in 𝐾 is equivalent to 𝑓  having no repeated roots in 𝐹 .
Extending 𝐾 to 𝐹  has no effect on the roots of 𝑓 , but it makes future analysis easier to
perform.
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In high school calculus you likely learned that a polynomial (in ℂ[𝑥], perhaps) has multiple
roots if and only if its derivative is 0. A similar result holds for separable polynomials.

Definition 5.25 (Formal Derivative).  The formal derivative of a polynomial
𝑎𝑛𝑥𝑛 + … + 𝑎0 ∈ 𝐹[𝑥] is 𝑛𝐹 𝑎𝑛𝑥𝑛−1 + … + 𝑎1.

Alternatively, the formal derivative is the unique linear map −′ : 𝐹 [𝑥] → 𝐹[𝑥] where
1′ = 0 and (𝑥𝑛)′ = 𝑛𝐹 𝑥𝑛−1 for every 𝑛 ≥ 1.

In short, the formal derivative is exactly what you’d expect from the Power Rule.

Exercise 5.26.  Verify the formal derivative satisfies the Product Rule. That is, for
𝑓, 𝑔 ∈ 𝐹 [𝑥], (𝑓𝑔)′ = 𝑓𝑔′ + 𝑓 ′𝑔.

Theorem 5.27.  A polynomial 𝑓 ∈ 𝐹 [𝑥] is separable if and only if is relatively prime to
𝑓 ′.

Just to be clear, two polynomials are relatively prime if they do not share any common non-
constant factors. And two polynomials 𝑓, 𝑔 ∈ 𝐹 [𝑥] are relatively prime if and only if 𝑓  and
𝑔 have no common roots in 𝐹 . For any common factor of 𝑓  and 𝑔 in 𝐹  must have the same
roots in 𝐹 , and if 𝑎 ∈ 𝐹  is a root of 𝑓  and 𝑔, then 𝑚𝑎 must divide 𝑓  and 𝑔.

First we prove a trivial preliminary lemma.

Theorem 5.28.  For 𝑎 ∈ 𝐹  and 𝑓 ∈ 𝐹 [𝑥],

(𝑥 − 𝑎)2 | 𝑓(𝑥) ⟺ 𝑓(𝑎) = 𝑓 ′(𝑎) = 0.

Proof of Theorem 5.28.  If (𝑥 − 𝑎)2 | 𝑓(𝑥) then 𝑓 ′(𝑎) = 0 by the Product Rule.

If 𝑓(𝑎) = 𝑓 ′(𝑎) = 0 then there is some 𝑔 ∈ 𝐹 [𝑥] such that 𝑓(𝑥) = (𝑥 − 𝑎)𝑔(𝑥). By the
Product Rule, 𝑓 ′(𝑥) = 𝑔(𝑥) + (𝑥 − 𝑎)𝑔′(𝑥), so

0 = 𝑓 ′(𝑎) = 𝑔(𝑎) + (𝑎 − 𝑎)𝑔′(𝑎) = 𝑔(𝑎).

□

Now the proof of the main theorem is trivial.

Proof of Theorem 5.27.  We have established that

𝑓 and 𝑓 ′ are relatively prime ⟺ there is no 𝑎 ∈ 𝐹 with 𝑓(𝑎) = 𝑓 ′(𝑎) = 0

⟺ there is no 𝑎 ∈ 𝐹 with (𝑥 − 𝑎)2 | 𝑓(𝑥)
⟺ 𝑓 is separable.

□
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As a corollary, there is a much simpler characterization of irreducible polynomials with the
derivative.

Theorem 5.29.  If 𝑓 ∈ 𝐹 [𝑥] is irreducible, then 𝑓  is separable if and only if 𝑓 ′ ≠ 0.

Proof of Theorem 5.29.  If 𝑓 ′ = 0 then obviously 𝑓  and 𝑓 ′ have shared roots in 𝐹 .

And 𝑓 ′ ≠ 0 implies that 𝑓 ′ and 𝑓  are relatively prime, as the irreducibility of 𝑓  implies
that its only non-constant factor in 𝐹[𝑥] is 𝑓 . (Obviously 𝑓 ′ ≠ 𝑓 .) □

Finally we define a separable extension.

Definition 5.30 (Separable Extension).  An algebraic extension 𝐾/𝐹  is separable if
for every 𝑎 ∈ 𝐾 , 𝑚𝑎 ∈ 𝐹[𝑥] is separable.

Inseparable algebraic extensions are somewhat uncommon. For every irreducible
polynomial in a field 𝐹  with characteristic 0 has non-zero derivative, meaning that every
extension 𝐾/𝐹  is separable.

Showing that every extension 𝔽𝑝𝑛/𝐹  of a finite field 𝐹  is separable requires a little more
ingenuity, but it is a short argument. Note 𝑎𝑝𝑛 − 𝑎 = 0 for every 𝑎 ∈ 𝔽𝑝𝑛 , and the
polynomial 𝑥𝑝𝑛 − 𝑥 is separable as it has derivative −1, so the minimal polynomial of 𝑎 is
separable too.

Example 5.31.  The extension 𝔽𝑝(𝑥)/𝔽𝑝(𝑥𝑝) is not separable because the minimal
polynomial of 𝑥 ∈ 𝔽𝑝(𝑥) in 𝔽𝑝(𝑥𝑝) is 𝑓(𝑡) = 𝑡𝑝 − 𝑥𝑝.¹¹ This polynomial is not
separable because it has derivative 0, so the extension is not separable.

5.4 Normal Extensions, i.e. more on Splitting Field Extensions

In this section we define normal extensions and characterize several equivalent conditions
for an extension to be normal.

Normal field extensions are indispensible for Galois Theory. In fact, since separability is a
trivial consequence of algebraicity in fields of characteristic 0 and finite fields (the two types
of fields we are most interested in studying), normality is the only condition that needs to
be checked for a potential Galois extension.

Definition 5.32.  An algebraic extension 𝐾/𝐹  is normal if there is a family of
polynomials {𝑓𝑖 | 𝑖 ∈ 𝐼} such that 𝐾/𝐹  is a splitting field extension for {𝑓𝑖 | 𝑖 ∈ 𝐼}.

¹¹This is the minimal polynomial because [𝔽𝑝(𝑥) : 𝔽𝑝(𝑥𝑝)] = 𝑝 and 𝔽𝑝(𝑥) = 𝔽𝑝(𝑥𝑝)(𝑥). To spell it out a
little more, use Theorem 5.12 to conclude the minimal polynomial of 𝑥 has degree 𝑝, and clearly 𝑡𝑝 − 𝑥𝑝 has
degree 𝑝. And if it was reducible, there would be a polynomial of smaller degree which 𝑝 is a root of,
contradiction.
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Just to be extremely clear, “normal extension” is a synonym for “splitting field extension”.
There are two reasons we use the term “normal”:

1. It is shorter to say “the extension 𝐾/𝐹  is normal” than “the extension 𝐾/𝐹  is a
splitting field extension”. Having a one-word adjective to describe an extension is
much more concise than having a three-word adjective.

2. Far more importantly, it will turn out that in a Galois (i.e. normal and separable)
extension 𝐾/𝐹 , the normal subgroups 𝐺 ≤ Aut𝐹 (𝐾) directly correspond to the
normal extensions 𝐻/𝐹  where 𝐹 ≤ 𝐻 ≤ 𝐾 .

It is easy to verify that an extension is normal: just find the family {𝑓𝑖 | 𝑖 ∈ 𝐼}. But it is not
immediately obvious how to show an extension is not normal, or even to generally
determine whether an extension is normal. Therefore we establish some conditions for
normality.

Theorem 5.33.  Consider an algebraic extension 𝐾/𝐹 . The following are equivalent:

1. 𝐾/𝐹  is normal.
2. For every 𝑎 ∈ 𝐾 , its minimal polynomial 𝑚𝑎 ∈ 𝐹[𝑥] splits over 𝐾 .
3. Every irreducible polynomial 𝑓 ∈ 𝐹 [𝑥] with a root in 𝐾 splits over 𝐾 .
4. For any field 𝐿 and homomorphisms 𝜑, 𝜓 : 𝐾 → 𝐿 where 𝜑 ↾ 𝐹 = 𝜓 ↾ 𝐹 , we

have 𝜑(𝐾) = 𝜓(𝐾).

Furthermore if [𝐾 : 𝐹 ] is finite then another equivalent condition is that 𝐾/𝐹  is a
splitting field extension for a single polynomial 𝑓 ∈ 𝐹 [𝑥].

To prove (4) ⟹ (3) we must first establish a technical lemma.

Theorem 5.34.  Suppose 𝜑 : 𝐹1 → 𝐹2 is a field isomorphism and that 𝐾1/𝐹1 and
𝐾2/𝐹2 are field extensions. For every 𝑎 ∈ 𝐾1 and 𝑏 ∈ 𝐾2, there is a unique extension¹²
𝜑𝑎 : 𝐹1(𝑎) → 𝐾2 of 𝜑 with 𝜑𝑎(𝑎) = 𝑏 if and only if 𝑏 is a root of 𝜑(𝑚𝑎) ∈ 𝐹2[𝑥].¹³

Proof of Theorem 5.34.  For ease of reading define 𝜑(𝑚𝑎) = 𝑓 ∈ 𝐹2[𝑥].

If 𝜑𝑎 exists then 0 = 𝜑𝑎(𝑚𝑎(𝑎)) = 𝑓(𝜑𝑎(𝑎)) = 𝑓(𝑏).

If 𝑏 is a root of 𝑓  then 𝑓  is the minimal polynomial of 𝑏 as it is irreducible.¹⁴ Thus

𝐹1(𝑎) ≅ 𝐹1[𝑥]
(𝑚𝑎(𝑥))

≅ 𝐹2[𝑥]
(𝑓(𝑥))

≅ 𝐹2(𝑏) ≤ 𝐾

and in particular, there is a natural isomorphism from 𝐹1[𝑥]/(𝑚𝑎(𝑥)) to
𝐹2[𝑥]/(𝑚𝑎(𝑥)) which extends 𝜑. Compose the isomorphisms together to get the
desired 𝜑𝑎.

¹²Precisely, 𝜑𝑎 ↾ 𝐹1 = 𝜑.
¹³As usual we define 𝑚𝑎 ∈ 𝐹1[𝑥] to be the minimal polynomial of 𝑎 ∈ 𝐾1.
¹⁴Since 𝜑 : 𝐹1 → 𝐹2 is an isomorphism, algebraic properties of polynomials are preserved.
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The uniqueness of 𝜑𝑎 is obvious: its behavior on 𝐹1 ∪ {𝑎} is fixed and this set
generates 𝐹1(𝑎). □

Proof of Theorem 5.33.  First we make no presumptions on [𝐾 : 𝐿] and show
(2) ⟹ (1) ⟹ (4) ⟹ (3) ⟹ (2).

• (2) ⟹ (1): Clearly 𝐾 splits over the family {𝑚𝑎 | 𝑎 ∈ 𝐾}. And the extension
𝐾/𝐹  is minimal because for each 𝑎 ∈ 𝐾 , 𝑚𝑎 splitting in 𝐾 guarantees 𝑎 is in the
minimal extension.

• (1) ⟹ (4): Field homomorphisms are either injective or trivial; we ignore the
case where 𝜑 and 𝜓 are trivial. Since we may embed 𝐾 into 𝐿, for convenience
just take 𝐿 ⊇ 𝐾 .

Suppose 𝐾/𝐹  is a splitting field for the family ℱ ⊆ 𝐹[𝑥]. Then
𝜑(𝐹) = 𝜓(𝐹) = 𝐹 , implying 𝜑 and 𝜓 fix every polynomial in ℱ. Thus 𝜑(𝐾)/𝐹  is
a splitting field extension for ℱ. So is 𝜓(𝐾)/𝐹  (for ℱ). By Exercise 5.21 we have
that 𝜑(𝐾) = 𝜓(𝐾).

• (4) ⟹ (3): Take any irreducible 𝑓 ∈ 𝐹 [𝑥] with root 𝑎 ∈ 𝐾 . (Note that 𝑓  is the
minimal polynomial of 𝑎.) We want to show that every root 𝑏 ∈ 𝐾 of 𝑓  is
contained in 𝐾 .

By Theorem 5.34 there exists 𝜑 : 𝐹(𝑎) → 𝐾 such that 𝜑(𝑎) = 𝑏 and 𝜑 ↾ 𝐹 = id.
(To be clear, we are extending id𝐹 : 𝐹 → 𝐹 .) Since the embedding id : 𝐹 (𝑎) → 𝐾
agrees with 𝜑 on 𝐹 , we have that 𝜑(𝐹(𝑎)) = 𝐹(𝑎). This means that
𝑏 ∈ 𝐹(𝑎) ⊆ 𝐾 .

• (3) ⟹ (2): Every minimal polynomial is irreducible.

Now suppose [𝐾 : 𝐿] is finite. If 𝐾/𝐹  is a splitting field extension for 𝑓  then 𝐾/𝐹  is
normal by definition. And if 𝐾/𝐹  is a splitting field extension for 𝑓1, …, 𝑓𝑛, then it is a
splitting field extension for their product 𝑓1…𝑓𝑛. □

5.5 Galois Theory

We have laid all of the necessary groundwork to begin exploring Galois theory. For each
extension 𝐾/𝐹 , we may consider the Galois group Aut𝐹 (𝐾), the group of field
automorphisms 𝜑 : 𝐾 → 𝐾 that fix 𝐹 . And for a special type of field extensions — the
Galois extensions — there is a correspondence between the intermediate fields
𝐹 ≤ 𝐻 ≤ 𝐾 and subgroups 𝐺 ≤ Aut𝐹 (𝐾).

We may apply these results to solve classical questions, such as “can we trisect an angle?”
and “can we determine whether a polynomial is solvable?” Furthermore we can use it to
show that ℂ is the algebraic closure of ℝ, where we define ℂ = ℝ[𝑥]/(𝑥2 + 1). But all this
in due time.

Definition 5.35 (Galois Extension).  An algebraic extension is Galois if it is normal
and separable.
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We will now proceed to show that several characterizations of Galois extensions are
equivalent. Really, I should be showing you why Galois extensions are interesting first. But
this characterizations is necessary to show the interesting results, which is why we must do
it first.

Theorem 5.36.  For a field extension 𝐾/𝐹  with finite [𝐾 : 𝐹 ], the following are
equivalent:

1. 𝐾/𝐹  is Galois.
2. 𝐾/𝐹  is a splitting field extension for some 𝑓 ∈ 𝐹 [𝑥] whose irreducible factors are

all separable.
3. |Aut𝐹 (𝐾)| = [𝐾 : 𝐹 ].
4. 𝐹 = Fix(Aut𝐹 (𝐾)).

Remember from group theory that Fix(Aut𝐹 (𝐾)) is defined as the subset of 𝐾 fixed under
every automorphism in Aut𝐹 (𝐾). By definition 𝐹 ⊆ Fix(Aut𝐹 (𝐾)), but the other
direction is the non-trivial part in this theorem.

Furthermore recall that [𝐾 : 𝐹 ] being finite implies that 𝐾/𝐹  is algebraic.

Exercise 5.37.  Verify that Fix(Aut𝐹 (𝐾)) is a subfield of 𝐾 .

Proof of Theorem 5.36.  We show that (1) ⟹ (2) ⟹ (3) ⟹ (4) ⟹ (1).

• (1) ⟹ (2): Since [𝐾 : 𝐹 ] is finite, there are some 𝑎1, …, 𝑎𝑛 ∈ 𝐾 such that
𝐾 = 𝐹(𝑎1, …, 𝑎𝑛). Now take 𝑓 = ∏𝑛

𝑖=1 𝑚𝑎𝑖
∈ 𝐹[𝑥].

Because 𝐾/𝐹  is normal (i.e. a splitting field extension), each of the 𝑚𝑎𝑖
 splits over

𝐾 , implying 𝑓  splits over 𝐾 . Minimality of this extension is obvious, so it is a
normal extension.

And the irreducible factors of 𝑓  are the 𝑚𝑎𝑖
. They are obviously separable.

• (2) ⟹ (3): Suppose 𝐾/𝐹  is a splitting field extension for 𝑓 ∈ 𝐹 [𝑥] whose
irrreducible coefficients are all separable. Let 𝑎1, …, 𝑎𝑛 be the roots of 𝑓  and note
𝐾 = 𝐹(𝑎1, …, 𝑎𝑛).

Define 𝐾0 = 𝐹  and 𝐾𝑖 = 𝐹(𝑎1, …, 𝑎𝑖) for 1 ≤ 𝑖 ≤ 𝑛. Let 𝑚𝑖 ∈ 𝐾𝑖−1[𝑥] be the
minimal polynomial of 𝑎𝑖 in 𝐾𝑖−1. Note by Theorem 5.6 and Theorem 5.12 that

[𝐾 : 𝐹 ] = [𝐾𝑛 : 𝐾𝑛−1]…[𝐾1 : 𝐹 ]
= deg 𝑚𝑛… deg 𝑚1.

By Exercise 5.9 𝑚𝑖 is separable as 𝑚𝑖 | 𝑓 . It is genuinely important that all the
roots are distinct.

Now note that an automorphism 𝜑 : 𝐾 → 𝐾 that fixes 𝐹  may uniquely be
determined by 𝜑(𝑎𝑖) for 1 ≤ 𝑖 ≤ 𝑛. We claim that because of Theorem 5.34,

1. every 𝜑 where 𝜑(𝑎𝑖) is a root of 𝑚𝑖 may be extended to a unique
automorphism on 𝐾 fixing 𝐹 ,
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2. and for every automorphism 𝜑 : 𝐾 → 𝐾 fixing 𝐹 , we must have 𝜑(𝑎𝑖) be a
root of 𝑚𝑖.

Since each 𝑚𝑖 has deg 𝑚𝑖 unique roots¹⁵, this would imply that
Aut𝐹 (𝐾) = deg 𝑚𝑛… deg 𝑚1. Now it just remains to prove these two claims are
true.

1. Repeatedly apply Theorem 5.34 to get unique 𝜑𝑖 : 𝐾𝑖 → 𝐾 which culminates
with 𝜑 = 𝜑𝑛 : 𝐾𝑛 → 𝐾 . By Theorem 5.33, since 𝜑 agrees with id : 𝐾 → 𝐾
on 𝐹 , 𝜑 is surjective. Interpreting 𝜑 as a linear map on 𝐾 as a 𝐹 -vector
space, we see that 𝐹  must also be injective by Rank-Nullity. So the 𝜑 we
generate is indeed an automorphism.

2. If 𝜑 is a homomorphism, 𝜑𝑖 = 𝜑 ↾ 𝐾𝑖 better be as well. And by
Theorem 5.34, 𝜑𝑖 may only exist if 𝜑𝑖(𝑎𝑖) is a root of 𝑚𝑖.

• (3) ⟹ (4): Because [𝐾 : 𝐹 ] is finite, there are 𝑎1, …, 𝑎𝑛 ∈ 𝐾 such that
𝐾 = 𝐹(𝑎1, …, 𝑎𝑛). Define 𝐾𝑖 and 𝑚𝑖 as before and let 𝑟𝑖 be the number of
distinct roots of each 𝑚𝑖 in 𝐾 .

By similar reasoning as before, we have that the number of homomorphisms in
𝜑 : 𝐾 → 𝐾 fixing 𝐹  is 𝑟1…𝑟𝑛. Since 𝑟𝑖 ≤ deg 𝑚𝑖 we have
Aut𝐹 (𝐾) = 𝑟1…𝑟𝑛 ≤ deg 𝑚1… deg 𝑚𝑛 = [𝐾 : 𝐹 ].

Obviously Aut𝐹 (𝐾) = AutFix(𝐹)(𝐾) so Aut𝐹 (𝐾) ≤ [𝐾 : Fix(𝐹)] implying that
𝐹 = Fix(𝐹).

• (4) ⟹ (1): We prove that every irreducible 𝑓 ∈ 𝐹 [𝑥] with a root in 𝐾 is
separable and splits over 𝐾 . Since Aut𝐹 (𝐾) consists of automorphisms, we may
define an equivalence relation on the roots of 𝑓  (in 𝐾) as follows:

𝑎 ∼ 𝑏 ⟺ there exists 𝜑 ∈ Aut𝐹 (𝐾) where 𝜑(𝑎) = 𝑏

Take some equivalence class 𝑅 of the roots and let 𝑓 = 𝑔ℎ where ℎ has no roots in
𝑅.

Note every 𝜑 ∈ Aut𝐹 (𝐾) permutes the roots of 𝑓  because 𝜑(𝑓) = 𝑓 , meaning
that 𝑎 ∈ 𝐾 is a root of 𝑓  if and only if 𝜑(𝑎) is a root of 𝜑(𝑓) = 𝑓 . Furthermore, 𝜑
permutes the roots in 𝑅 because 𝜑 is injective and cannot send roots in 𝑅 outside
of 𝑅.

The multiplicity of every root in 𝑅 must be the same since given some
𝜑 ∈ Aut𝐹 (𝐾), if 𝜑(𝑎) = 𝑏 for 𝑎, 𝑏 ∈ 𝑅, then the multiplicity of 𝑏 in 𝜑(𝑓) = 𝑓  is
the multiplicity of 𝑎 in 𝑓 . And by definition of 𝑅, there is some 𝜑 such that
𝜑(𝑎) = 𝑏 for every pair 𝑎, 𝑏 ∈ 𝑅.

This means that 𝜑 fixes 𝑔, meaning that 𝜑 must fix every coefficient of 𝑔. And the
only way for this to happen for every 𝜑 ∈ Aut𝐹 (𝐾) is for the coefficients of 𝑔 to
be in 𝐹 , meaning 𝑔 ∈ 𝐹 [𝑥].

¹⁵This is where separability comes in play!
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This means 𝑔 must be equal to (a scalar multiple of) 𝑓  as 𝑓  is irreducible. Notable,
every root of 𝑓  must be in 𝑅, and 𝑓  must split over 𝐾 .

Now suppose the roots of 𝑓  are 𝑟1…𝑟𝑛. Because 𝜑 permutes the roots of 𝑓 ,
ℎ = 𝑟1…𝑟𝑛 is fixed under 𝜑, meaning its coefficients are in 𝐹 . Since ℎ divides 𝑓
and 𝑓  is irreducible, ℎ must be equal to (a scalar multiple of) 𝑓 . Thus 𝑓  is
separable.

□

In the proof we have shown that |Aut𝐹 (𝐾)| ≤ [𝐾 : 𝐹 ] for every extension 𝐾/𝐹  where
[𝐾 : 𝐹 ] is finite, regardless of whether it is Galois or not. Keep this in mind because it will
be important.

This may look like a lot, but the theorem is actually quite natural. The proof of (1) ⟹ (2)
is completely trivial, the proof of (2) ⟹ (3) is the only possible argument that could work
when using Theorem 5.12 and Theorem 5.34, and the rest of the proofs are just riffs on
(2) ⟹ (3). None of these ideas are particularly tricky if you have a good understand of the
theory of field extensions we developed earlier.

Now we can finally establish some interesting connections between field theory and group
theory.

Theorem 5.38 (Galois Correspondence).  Suppose 𝐾/𝐹  is a field extension with
[𝐾 : 𝐹 ] finite. We describe the Galois correspondence as follows:

1. There is a map 𝐺 ↦ Fix (𝐺) where 𝐺 ≤ Aut𝐹 (𝐾) and Fix (𝐺) is the fixed field
of 𝐾 under 𝐺.

2. There is a map 𝐻 ↦ Aut𝐻(𝐾) where 𝐹 ≤ 𝐻 ≤ 𝐾 and Aut𝐻(𝐾) is the group of
automorphisms 𝜑 : 𝐾 → 𝐾 fixing 𝐻 .

Then 𝐾/𝐹  is Galois if and only if the maps are two-sided inverses of each other, which
implies both maps are bijective.

Furthermore, the correspondence has several more interesting properties:

1. It is inclusion-reversing.
a. If 𝐺1 ≤ 𝐺2 ≤ Aut𝐹 (𝐾) then Fix (𝐺1) ≥ Fix (𝐺2).
b. If 𝐹 ≤ 𝐻1 ≤ 𝐻2 ≤ 𝐾 then Aut𝐻1

(𝐾) ≥ Aut𝐻2
(𝐾).

2. If 𝐾/𝐹  is Galois, then the size of an automorphism subgroup is equal to the
degree of the corresponding intermediate extension. If 𝐺 ≤ Aut𝐹 (𝐾) then
|𝐺| = [𝐾 : Fix (𝐺)] and [Fix (𝐺) : 𝐹 ] = |Aut𝐹 (𝐾)|/|𝐺|.

3. If 𝐾/𝐹  is Galois, then for all 𝐹 ≤ 𝐻 ≤ 𝐾 , 𝐾/𝐻  is Galois.
4. If 𝐾/𝐹  is Galois, then normality is preserved. For all 𝐹 ≤ 𝐻 ≤ 𝐾 , 𝐻/𝐹  is

normal if and only if Aut𝐻(𝐾) ⊴ Aut𝐹 (𝐾). Furthermore, when this is the case,
Aut𝐹 (𝐾)/Aut𝐻(𝐾) ≅ Aut𝐹 (𝐻).

We extract the difficult part into a technical lemma.
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Theorem 5.39.  Suppose 𝐾 is a field and 𝐺 is a finite subgroup of Aut(𝐾). Then
|𝐺| = [𝐾 : Fix(𝐺)] and 𝐺 = AutFix(𝐺)(𝐾).

Note this implies that 𝐾/ Fix(𝐺) is Galois.

Proof of Theorem 5.39.  Since AutFix(𝐺)(𝐾) ≥ 𝐺 (as every automorphism in 𝐺 fixes
Fix 𝐺 by definition), we know that

[𝐾 : Fix(𝐺)] ≥ |AutFix(𝐺)(𝐾)| ≥ |𝐺|.

If we show that [𝐾 : Fix(𝐺) = |𝐺|, then this chain of inequalities collapses. In
particular, this would imply that AutFix(𝐺)(𝐾) = 𝐺 as both groups are finite.

Assume for the sake of contradiction that [𝐾 : Fix(𝐺)] > |𝐺|. Enumerate the elements
of 𝐺 as 𝜑1, …, 𝜑𝑛 where 𝜑1 = id, select some 𝑎1, …, 𝑎𝑛+1 ∈ 𝐾 that are independent
over Fix(𝐺) and define vectors 𝑣1, …, 𝑣𝑛+1 ∈ 𝐾𝑛 where

𝑣𝑖 =
(
((
(𝜑1(𝑎𝑖)

⋮
𝜑𝑛(𝑎𝑖))

))
)

for each 1 ≤ 𝑖 ≤ 𝑛 + 1.

Obviously these vectors are dependent over 𝐾𝑛 as a vector space over 𝐾 . So let 𝑚 be
the minimal size of a dependent subset. Without loss of generality, suppose 𝑣1, …, 𝑣𝑚
are dependent. Then there are some 𝜆1, …, 𝜆𝑚 ∈ 𝐾 such that

∑
𝑚

𝑖=1
𝜆𝑖𝑣𝑖 = 0.

Since 𝑚 is minimal, none of the 𝜆𝑖 are 0. Thus we may multiply by a scalar to get
𝜆1 = 1.

Coordinate matching yields

∑
𝑚

𝑖=1
𝜆𝑖𝜑𝑗(𝑎𝑖) = 0

for each 1 ≤ 𝑗 ≤ 𝑛. In particular, as 𝜑1 = id, we have

∑
𝑚

𝑖=1
𝜆𝑖𝑎𝑖 = 0.

Because the 𝑎𝑖 are independent over Fix(𝐺), there must be some 1 ≤ 𝑖 ≤ 𝑚 where
𝜆𝑖 ∉ Fix(𝐺). Without loss of generality suppose that 𝜆𝑚 ∉ Fix(𝐺) and that 𝜑𝑛 is the
witness to 𝜆𝑚 ∉ Fix(𝐺), i.e. 𝜑𝑛(𝜆𝑚) ≠ 𝜆𝑚. (We must have 1 = 𝜆1 ∈ Fix(𝐺) as every
automorphism fixes 1, so this truly is without loss of generality.)

Applying 𝜑𝑛 to each of the coordinates of ∑𝑚
𝑖=1 𝜆𝑖𝑣𝑖, we see that
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∑
𝑚

𝑖=1
𝜑𝑛(𝜆𝑖)𝜑𝑛𝜑𝑗(𝑎𝑖) = 0

for all 1 ≤ 𝑗 ≤ 𝑛. But since 𝐺 is a group, there is some 𝑗 such that 𝜑𝑛𝜑𝑗 = id, and
considering this 𝑗 yields that

∑
𝑚

𝑖=1
𝜑𝑛(𝜆𝑖)(𝑎𝑖) = 0.

This implies that

∑
𝑚

𝑖=1
(𝜑𝑛(𝜆𝑖) − 𝜆𝑖)(𝑎𝑖) = 0,

and in particular, because 𝜆1 = 1, we must have 𝜑𝑛(𝜆1) = 𝜆1. Thus the coefficient of
𝑎𝑖 in this linear combination is 0. And as 𝜑𝑛(𝜆𝑚) − 𝜆𝑚 ≠ 0 (recall by definition
𝜑𝑛(𝜆𝑚) ≠ 𝜆𝑚), this contradicts the minimality of 𝑚. □

Now we prove the main theorem.

Proof of Theorem 5.38.  The first property of the correspondence is obvious and we take
it for granted from here on out.

We first show that 𝐾/𝐹  is Galois if the Galois correspondences are inverses. If the
Galois correspondences are inverse to each other, then there must exist some unique 𝐺
such that Fix𝐺(𝐾) = 𝐹 . Because the correspondence is inclusion-reversing, we must
have 𝐺 be maximal, i.e. 𝐺 = Aut(𝐾/𝐹).

From here on out, we presume 𝐾/𝐹  is Galois. We will be proving the properties of the
correspondence out of order.

• Note that for all 𝐹 ≤ 𝐻 ≤ 𝐾 , since 𝐾/𝐹  is a splitting field extension for
separable 𝑓 ∈ 𝐹 [𝑥], 𝐻/𝐹  is a splitting field extension for separable 𝑓 ∈ 𝐻[𝑥].
Thus 𝐾/𝐻  is Galois, proving (3).

• Since 𝐻/𝐾 is Galois, we know that 𝐻 = Fix(Aut𝐻(𝐾)), so

(𝐻 ↦ Aut𝐻(𝐾)) ∘ (𝐺 ↦ Fix(𝐺)) = id .

And by Theorem 5.39 we know for each 𝐺 ≤ Aut𝐹 (𝐾), 𝐺 = AutFix(𝐺)(𝐾). Thus

(𝐺 ↦ Fix(𝐺)) ∘ (𝐻 ↦ Aut𝐻(𝐾)) = id

as well, which shows the two Galois correspondences are two-sided inverses of
each other.

• From Theorem 5.39 we have [𝐾 : Fix(𝐺)] = |𝐺| and by Theorem 5.6 we have

[Fix(𝐺) : 𝐹 ] = [𝐾 : 𝐹 ]/[𝐾 : Fix(𝐺)] = |Aut𝐹 (𝐾)|/|𝐺|,

proving (2).
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• Suppose 𝐻/𝐹  is normal. Obviously it is separable, so it is Galois. We aim to show
that for any 𝜑 ∈ Aut𝐹 (𝐾), 𝜑 ↾ 𝐻 ∈ Aut𝐹 (𝐻). This will induce a natural map
Φ : Aut𝐹 (𝐾) → Aut𝐹 (𝐻) where Aut𝐹 (𝐾) : 𝜑 ↦ 𝜑 ↾ 𝐻 , and applying the First
Isomorphism Theorem yields

im Φ ≅ Aut𝐹 (𝐾)
ker Φ

= Aut𝐹 (𝐾)
Aut𝐻(𝐾)

.

Since this quotient is well-defined, Aut𝐻(𝐾) ⊴ Aut𝐹 (𝐾).

To show that im Φ = Aut𝐹 (𝐻), note by Theorem 5.36 and Theorem 5.6 that

|im Φ| ≤ |Aut𝐹 (𝐻)|
= [𝐻 : 𝐹 ]

= [𝐾 : 𝐹 ]
[𝐾 : 𝐻]

= |Aut𝐹 (𝐾)|
|Aut𝐻(𝐾)|

= |Aut𝐹 (𝐾)
Aut𝐻(𝐾)

|.

Since equality holds, we must have im Φ = Aut𝐹 (𝐻) as desired.

Now we just need to check that 𝜑 ↾ 𝐻 ∈ Aut𝐹 (𝐻) for every 𝜑 ∈ Aut𝐹 (𝐾). For
every 𝑎 ∈ 𝐻 , the minimal polynomial 𝑚𝑎 ∈ 𝐹[𝑥] splits over 𝐻  as 𝐻/𝐹  is normal.
Since 𝜑 permutes the roots of 𝑚𝑎 in 𝐿, we may deduce that

𝑚𝑎(𝑎) = 0 ⟹ 𝑚𝑎(𝜑(𝑎)) = 0

and since every root of 𝑚𝑎 lies in 𝐻 , we know 𝜑(𝑎) ∈ 𝐻  as well. So 𝜑 ↾ 𝐻  may be
considered as a map to 𝐻 , and since 𝜑 ↾ 𝐻  is injective, viewing it as a map on 𝐻
as a vector space over 𝐹  and applying Rank Nullity allows us to deduce it is
surjective as well.

This proves one direction of (4).

• Suppose that Aut𝐻(𝐾) ⊴ Aut𝐹 (𝐾). It is enough to show 𝐻/𝐹  is normal as
separability comes for free. Suppose 𝑎 ∈ 𝐻  and 𝑚𝑎 ∈ 𝐹[𝑥] is the minimal
polynomial of 𝑎. We know it splits over 𝐾 as 𝐾/𝐹  is normal, so it suffices to show
for every root 𝑏 ∈ 𝐾 of 𝑚𝑎, we also have 𝑏 ∈ 𝐻 = Fix(Aut𝐻(𝐾)).

We showed in the proof of (4) ⟹ (1) for Theorem 5.36 that there is some
𝜑 ∈ Aut𝐹 (𝐾) where 𝜑(𝑎) = 𝑏. Now for every 𝜓 ∈ Aut𝐻(𝐾) we have
𝜑𝜓𝜑−1 = 𝜓 as Aut𝐻(𝐾) ⊴ Aut𝐹 (𝐾). In particular,
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𝜓(𝑏) = 𝜑𝜓𝜑−1(𝑏)
= 𝜑𝜓(𝑎)
= 𝜑(𝑎)
= 𝑏,

so 𝑏 ∈ Fix(Aut𝐻(𝐾)) as desired.

□

5.5.1 Fundamental Theorem of Algebra

To show ℂ is algebraically closed, it suffices to show that every polynomial 𝑓 ∈ ℂ[𝑥] splits
over ℂ. Actually, it suffices to show that polynomials in ℝ[𝑥] split over ℂ, because if we
know 𝑓𝑓 ∈ ℝ[𝑥] splits over ℂ, we must have that 𝑓  splits in ℂ.

Here is how we will proceed. If we show that the degree of every splitting field extension
𝐹/ℝ for 𝑓 ∈ ℝ[𝑥] is 1 or 2, then we are home free. (To state the obvious, 𝐹/ℝ is Galois; we
will use this to great effect later.)

1. If [𝐹 : ℝ] = 1, then obviously 𝐹 = ℝ and thus 𝑓  splits over ℝ.
2. Any extension 𝐹/ℝ can be written in the form ℝ(𝑎), and as ℂ = ℝ(𝑖), there is an

obvious automorphism from ℂ to ℝ(𝑎) where 𝑖 ↦ 𝑎. To be very explicit, any two
extensions of ℝ with degree 2 are isomorphic.

We now show that if an extension 𝐹/ℝ is non-trivial, it must have even degree. Note that
we do not stipulate the extension is normal here. Suppose 𝑎 ∈ 𝐹 \ ℝ, then ℝ(𝑎)/𝐹  is
an intermediate extension whose degree we will show is even. Note [ℝ(𝑎) : ℝ] = deg 𝑚𝑎
where 𝑚𝑎 ∈ 𝐹[𝑥] is the minimal polynomial of 𝑎. The degree of 𝑚𝑎 is even because every
odd degree polynomial in ℝ[𝑥] has a root in ℝ and thus is not irreducible. Applying
Theorem 5.6 yields that [𝐹 : ℝ] is even as well.

So the degree of any splitting field extension 𝐹/ℝ must be a power of 2. Because if 𝐺 is a
Sylow-2 subgroup of Autℝ(𝐹), we may conclude that [Fix(𝐺) : ℝ] is an extension with odd
order, implying it has order 1. Since Fix(𝐺) = ℝ, we may conclude that 𝐺 = Autℝ(𝐹).

Suppose for the sake of contradiction that the degree of 𝐹/ℝ is 2𝑛 for 𝑛 ≥ 2. Then Sylow’s
Theorem says there is 𝐻 ≤ 𝐾 ≤ Autℝ(𝐹) where |𝐻| = 2𝑛−2 and |𝐾| = 2𝑛−1. And the
Galois correspondence implies that [Fix(𝐻) : Fix(𝐾)] = 2 and [Fix(𝐾) : ℝ] = 2. We know
that Fix(𝐾) ≅ ℂ, so all that is left to do is show there is no extension of ℂ with degree 2.

If there was one, then it would be of the form ℂ(𝑎), implying that deg 𝑚𝑎 = 2. But every
quadratic in ℂ has roots and is thus reducible, contradiction.

5.5.2 Solvability over Radical Extensions

It is well-known that there is a formula for finding the roots of a polynomial with degree at
most 4. Our goal is to show there is no general formula for degree 5 polynomials, and
furthermore, when to determine whether a particular polynomial 𝑓  can be “solved”.

Chapter 5 Fields 103



To do this, we first define the notion of a “solvable” polynomial, find a characterization for
solvable polynomials, and finally we will connect this to the notion of an explicit formula
for the roots of a general degree 𝑛 polynomial. Though our original motivating question
came from polynomials in ℝ[𝑥], we will see that our analysis bears fruit for general fields.

Suppose we have a field 𝐹  and some 𝑓 ∈ 𝐹 [𝑥]. As a matter of shorthand, we define the
Galois group of 𝑓  as Aut𝐹 (𝐾) where 𝐾/𝐹  is a splitting field extension over 𝑓 .

Definition 5.40 (Simple Radical Extension).  An extension 𝐾/𝐹  is simple if
𝐾 = 𝐹(𝑎) and there are some 𝑏 ∈ 𝐹  and 𝑛 ∈ ℕ such that 𝑎𝑛 = 𝑏.

An example of a simple radical extension is ℚ(
√

2)/ℚ because 
√

22 = 2 ∈ ℚ. Also, it is
very important to remember that ℚ(𝑖) is a radical extension too (𝑖2 = −1 ∈ ℚ, after all).

Definition 5.41 (Radical Extension).  An extension 𝐾/𝐹  is radical if there is a
series of fields

𝐹 = 𝐾0 ≤ … ≤ 𝐾𝑛 = 𝐾

where each extension 𝐾𝑖+1/𝐾𝑖 is simple.

Note that the extension ℚ(√√
2 +

√
3)/ℚ is not a simple radical extension. But it is a

radical extension because each of the extensions in the chain

ℚ ≤ ℚ(
√

2) ≤ ℚ(
√

2,
√

3) ≤ ℚ(√√
2 +

√
3)

is a simple radical extension.

Now we prove a few technical facts about radical extensions which will make the discussion
surrounding solvability much easier.

Theorem 5.42.  Suppose that 𝐹  is a field with characteristic 0 and 𝐾/𝐹  is a splitting
field extension of 𝑥𝑛 − 𝑏 ∈ 𝐹[𝑥]. Then there exist 𝑎 ∈ 𝐾 and 𝜁 ∈ 𝐾 with 𝑎𝑛 = 𝑏 and
𝜁𝑛 = 1 such that 𝐾 = 𝐹(𝑎, 𝜁).

Notably, this implies 𝐹(𝑎, 𝜁)/𝐹  is radical because the extensions in the chain
𝐹 ≤ 𝐹(𝑎) ≤ 𝐹(𝑎, 𝜁) are simple radical extensions.

Proof of Theorem 5.42.  Suppose the roots of 𝑥𝑛 − 𝑏 are 𝑎1, …, 𝑎𝑛 ∈ 𝐾 . Now define
𝜁𝑖 = 𝑎𝑖

𝑎1
 for each 1 ≤ 𝑖 ≤ 𝑛 and note that 𝜁𝑛

𝑖 = 1. Each of the 𝜁𝑖 are unique as 𝑥𝑛 − 𝑏 is
irreducible and thus separable (remember the characteristic of 𝐹  is 0) and there are at
most 𝑛 roots of 𝑥𝑛 − 1, so they are the 𝑛th roots of unity.

Note the multiplicative group on {𝜁1, …, 𝜁𝑛} has order 𝑛 and is cyclic, so define 𝜁 to be
a generator of this group. Take 𝑎 = 𝑎1 for concreteness, though the choice of 𝑎 does
not matter.
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We can easily see that 𝐾 = 𝐹(𝑎, 𝜁). Clearly 𝑥𝑛 − 𝑏 is the minimal polynomial of 𝑎, so
by separability all of the roots are unique. We have identified 𝑛 distinct roots
𝑎, 𝑎𝜁, …, 𝑎𝜁𝑛−1, so 𝑥𝑛 − 𝑏 splits over 𝐹(𝑎, 𝜁). And this extension is obviously minimal.
□

Definition 5.43.  We say a polynomial 𝑓 ∈ 𝐹 [𝑥] is solvable (alternatively solvable by
radicals) precisely when there is a radical extension 𝐾/𝐹  which 𝑓  splits over.

Let us quickly take stock of why we should care about solvability. A real number 𝑟 may be
written with the operations +, ×, (−)𝑞 (where 𝑞 is a rational) over rationals precisely when
𝑟 is contained in a radical extension of ℚ.

The existence of a general-form¹⁶ solution for the roots of a degree 𝑛 polynomial implies
that the roots of every rational polynomial are contained in a radical extension. (For we are
inserting rationals as the coefficients and performing the operations +, ×, (−)𝑞 .)

Now, if there exists even one 𝑓 ∈ ℚ[𝑥] with deg 𝑓 = 𝑛 which is not solvable, we will have
shown that there is no general formula for the roots of a degree 𝑛 polynomial. So we should
look into whether a polynomial is solvable.

(By the way, this entire discussion works with any extension 𝐾/𝐹  and any 𝑎 ∈ 𝐾 .)

Theorem 5.44.  In a field 𝐹  with characteristic 0, a polynomial 𝑓 ∈ 𝐹 [𝑥] is solvable if
and only if the Galois group of 𝑓  is solvable.

Proof of Theorem 5.44.  Suppose 𝑓  is solvable, that is, there exists a chain

𝐹 ≤ 𝐹(𝑎1) ≤ … ≤ 𝐹(𝑎1, …, 𝑎𝑛)

of simple radical extensions where 𝑓  splits over 𝐹(𝑎1, …, 𝑎𝑛). But we may extend
𝐹(𝑎1) to 𝐹(𝑎1, 𝜁1) and so on to get the chain

𝐹 ≤ 𝐹(𝑎1, 𝜁1) ≤ … ≤ 𝐹(𝑎1, 𝜁1, …, 𝑎𝑛, 𝜁𝑛)

of normal radical extensions. For notational convenience define 𝐹0 = 𝐹  and
𝐹(𝑎1, 𝜁1, …, 𝑎𝑖, 𝜁𝑖) as 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

Note 𝐹𝑛/𝐹  is Galois by construction which implies that every 𝐹𝑛/𝐹𝑖 is Galois.

Considering the chain 𝐹𝑖 ≤ 𝐹𝑖+1 ≤ 𝐹𝑛 and using the Galois correspondence yields
that

Aut𝐹𝑖+1
(𝐹𝑛) ⊴ Aut𝐹𝑖

(𝐹𝑛),

with

¹⁶By general form, I mean an expression with the operations +, ×, (−)𝑞 over the coefficients of the
polynomial (as variables).
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Aut𝐹𝑖
(𝐹𝑛)/Aut𝐹𝑖+1

(𝐹𝑛) ≅ Aut𝐹𝑖
(𝐹𝑖+1).

Note that Aut𝐹𝑖
(𝐹𝑖+1) is abelian as any automorphism 𝜑 : 𝐹𝑖+1 → 𝐹𝑖+1 fixing 𝐹  is

uniquely determined by 𝜑(𝑎𝑖+1) ∈ {𝑎𝑖+1, …, 𝜁𝑛−1
𝑖 𝑎𝑖+1}.

This induces a chain

id = Aut𝐹𝑛
(𝐹𝑛) ⊴ … ⊴ Aut𝐹 (𝐹𝑛)

whose quotients are abelian. Thus Aut𝐹 (𝐹𝑛) is solvable by Theorem 2.50.

To be entirely clear, Aut𝐹 (𝐹𝑛) is not the Galois group of 𝑓 ; however, it does contain
the Galois group. Since the subgroup of a solvable group is solvable, this is sufficient.

Now suppose 𝐾/𝐹  is a splitting field extension for 𝑓  and that Aut𝐹 (𝐾) is solvable.
This induces a chain

id = 𝐺0 ≤ … ≤ 𝐺𝑛 = Aut𝐹 (𝐾)

with abelian quotients.

The structure theorem for finite abelian groups implies

𝐺𝑖+1/𝐺 ≅ ℤ
(𝑝𝑒1

1 )
⊕ … ⊕ ℤ

(𝑝𝑒𝑘
𝑘 )

,

i.e. 𝐺𝑖+1/𝐺 is the direct sum of cyclic groups. This means we may further decompose
𝐺𝑖+1/𝐺 into a chain

𝐺𝑖 = 𝐻𝑖,0 ⊴ 𝐻𝑖,1 ⊴ … ⊴ 𝐻𝑖,𝑚 = 𝐺𝑖+1

where every 𝐻𝑖,𝑗+1/𝐻𝑖,𝑗 is cyclic. And any cyclic Galois group must be the result of a
radical extension.¹⁷ Since the composition of radical extensions is obviously radical, we
are done. □

To show that there is no formula for the roots of a degree 5 polynomial, we simply have to
show the Galois group of 𝑥5 − 80𝑥 + 16 is unsolvable. So we will do exactly that.

First note that 𝑥5 − 80𝑥 + 16 is irreducible over ℚ; we may check this with the Rational
Root Theorem. Now note 𝑥5 − 80𝑥 + 16 has three roots. Informally, we consider the graph
of 𝑓(𝑥) = 𝑥5 − 80𝑥 + 16.

¹⁷This is not immediately obvious. First note that two Galois extensions 𝐾1/𝐹  and 𝐾2/𝐹  with the same
Galois groups are isomorphic, for the Galois correspondence implies that 𝐾1 and 𝐾2 share the same subfield
structure. Then note a cyclic Galois group of order 𝑛 can be generated by a polynomial of the form 𝑥𝑛 − 1,
so the extension must be radical.
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Formally, we could look at the inflection points and the derivative of 𝑓 . We will not bother
to perform this formal analysis.

Suppose 𝑎 is a root of 𝑥5 − 80𝑥 + 16 and that 𝐾/𝐹  is a splitting field extension over this
polynomial. Note [𝐹 (𝑎) : 𝐹 ] = 5 so by Theorem 5.6 [𝐾 : 𝐹 ] is divisible by 5. Since 𝐾/𝐹  is
Galois (separability is free), the Galois Correspondence implies that |Aut𝐹 (𝐾)| is divisible
by 5 too. Cauchy’s says Aut𝐹 (𝐾) contains an element of order 5, which must be a 5-cycle.

Furthermore, the conjugation 𝑧 ↦ 𝑧 fixes the real roots and swaps the complex roots, so it
is a 2-cycle.

Exercise 5.45.  Show that for prime 𝑝, any two-cycle (1, 1 + 𝑘) and 𝑝-cycle (1, 2, …, 𝑝)
in 𝑆𝑝 generate the entirety of 𝑆𝑝 as follows:

• Denote (1, …, 𝑝) as 𝜎. Show that 𝜎(𝑖, 𝑗)𝜎−1 = (𝑖 + 1, 𝑗 + 1) in general.
• This allows us to generate (𝑎, 𝑎 + 𝑘) for every 1 ≤ 𝑎 ≤ 𝑝 (of course, all taken

modulo 𝑝). Now 1 → 1 + 𝑘 → 1 + 2𝑘 → … → 1 + 𝑝𝑘 allows us to swap any two
elements we want.

• Now it is fairly obvious that repeatedly swapping elements can get us any
permutation.

If you really want to see for yourself, you may inductively show this: to construct
a desired permutation 𝜑, swap to get 𝜑(𝑝) be correct, and then permute
𝜑 ↾ {1, …, 𝑝 − 1} correctly with the inductive hypothesis.

This implies that Aut𝐹 (𝐾) = 𝑆5. And since 𝑆5 is not solvable (the specific reasons of
which we will not go into), 𝑓  is not solvable.

Of course, the same line of reasoning works for any 𝑓  with three real roots and two complex
roots. For example, 𝑥5 − 80𝑥 + 5 also is unsolvable over radicals. It is irreducible
(Eisenstein’s Criterion is sufficient to show this), and it has the correct number of real/
complex roots.

5.6 Characterizing the Finite Fields

It is a fact that every finite field has order 𝑝𝑛. Conversely, for every 𝑝𝑛 there is a unique
finite field of that order. We set out to prove this and a few other facts about finite fields.
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Theorem 5.46.  Suppose 𝐹  is a finite field. Let 𝐹 ∗ = (𝐹 \ {0}, ×) be the multiplicative
group of 𝐹 . Then 𝐹 ∗ is cyclic.

Proof of Theorem 5.46.  The polynomial 𝑥𝑝 − 1 has at most 𝑝 roots in 𝐹  — one of which
is 1 — so there are at most 𝑝 − 1 elements in 𝐹 ∗ whose order is 𝑝.

The structure theorem for finite abelian groups says that

𝐹 ∗ ≅ ℤ
(𝑝𝑒1

1 )
⊕ … ⊕ ℤ

(𝑝𝑒𝑛𝑛 )
.

If there exist 𝑖 ≠ 𝑗 such that 𝑝𝑖 = 𝑝𝑗, then we may find 𝑝 − 1 elements of order 𝑝 in
each of ℤ/(𝑝𝑒𝑖

𝑖 ) and ℤ/(𝑝𝑒𝑗
𝑗 ). This gives us 2𝑝 − 2 > 𝑝 − 1 elements of order 𝑝.

So 𝑝1, …, 𝑝𝑛 are all distinct. And thus the group is cyclic, for it is generated by the
element (1, …, 1). □

Note that every finite field 𝐹  has prime characteristic 𝑝, implying the prime subfield is
isomorphic to 𝔽𝑝. And if 𝑃 ≤ 𝐹  is the prime subfield, then obviously [𝐹 : 𝑃 ] is finite.
Suppose (𝑎1, …, 𝑎𝑛) is a basis of 𝐹  as a vector space in 𝑃 . Then each of the linear
combinations

𝑝1𝑎1 + … + 𝑝𝑛𝑎𝑛

where 𝑝𝑖 ∈ 𝑃  is unique for each distinct tuple (𝑝1, …, 𝑝𝑛). This implies that 𝐹  has 𝑝𝑛

elements. So every field has cardinality of the form 𝑝𝑛 for some prime 𝑝 and positive integer
𝑛.

If fields 𝐹1 and 𝐹2 both have 𝑝𝑛 elements, then we show 𝐹1 and 𝐹2 are isomorphic. We can
assume their prime subfields are 𝔽𝑝, otherwise we simply find fields isomorphic to 𝐹1 and
𝐹2 whose prime subfields are 𝔽𝑝.

Now

𝑓(𝑥) = 𝑥𝑝𝑛−1 − 1

is a polynomial whose roots are every 𝑎 ∈ 𝐹1 besides 0. So evidently 𝐹1 splits over
𝑓 ∈ 𝔽𝑝[𝑥]. Obviously 𝐹1/𝔽𝑝 is a splitting field extension over 𝑓 . Similarly 𝐹2/𝔽𝑝 is a
splitting field extension over 𝑓 , and the uniqueness of the splitting field extension implies
𝐹1 ≅ 𝐹2.

We use very similar reasoning to conclude a field of order 𝑝𝑛 exists for every prime 𝑝 and
positive integer 𝑛. Because 𝑓(𝑥) = 𝑥𝑝𝑛−1 − 1 ∈ 𝔽𝑝[𝑥] has derivative −1, it is separable.
Now take a splitting field extension 𝐾/𝔽𝑝, and take the map 𝜑 : 𝐾 → 𝐾 where 𝜑 : 𝑎 ↦ 𝑎𝑝.
(This is known as the Frobenius Endomorphism.)

Define 𝑚 to be [𝐾 : 𝔽𝑝] and note that 𝐾 ≅ 𝐹𝑝𝑚 . Thus 𝜑(𝑎𝑝𝑚−1) = 𝑎𝑝𝑚 = 𝑎, showing that
𝜑 is surjective, and any surjection from a finite set to itself must also be an injection.
Obviously 𝜑 preserves multiplication, and the Binomial Theorem shows that
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𝜑(𝑎 + 𝑏) = (𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 = 𝜑(𝑎) + 𝜑(𝑏)

as the characteristic of 𝐾 is still 𝑝. So 𝜑 preserves addition as well.

Finally, note that 𝜑𝑚 : 𝑎 ↦ 𝑎𝑝𝑚  is an automorphism which fixes precisely the roots of 𝑓
and 0. Putting this all together, 𝜑𝑚 ∈ Aut𝔽𝑝

(𝐾) and |Fix(𝜑𝑚)| = 𝑝𝑛.¹⁸

Thus a field of order 𝑝𝑛 exists.

¹⁸Strictly speaking, we really should talk about the fixed field of the subgroup of Aut𝔽𝑝
(𝐾) generated by

𝜑𝑚 to generate a subfield. But because this subgroup is cyclic, it suffices to just consider the generator 𝜑𝑚.
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Chapter 6

Concluding Remarks

Congratulations on making it through. If you fully understood the text, you should now
have a strong conceptual understanding of the content in an introductory graduate algebra
course. In particular, the hope is that you understand how topics are connected and have
internalized why the important theorems are true.

I realize that it may be a little rich to call this text a primer when it clocks in at over a
hundred pages, but I stick by it. This primer is thorough in many respects, but there are
many gaps which it leaves.

Most importantly, there are startlingly few worked examples and exercises in this text. We
define only the concepts we really need and move on immediately afterwards. Just looking
at group theory, we shown very few examples of using Sylow’s to characterize groups of a
certain finite order. For instance, we can use Sylow’s and some combinatorics to show that
no group of order 56 is finite. Nor have we done very many Orbit-Stabilizer exercises. For
instance, we have not mentioned that for groups 𝐻 ≤ 𝐺, [𝐺 : 𝐻] = 2 implies 𝐻 ⊴ 𝐺. And
in general, if |𝐺| is finite and 𝑝 is the smallest prime dividing 𝐺, [𝐺 : 𝐻] = 𝑝 implies 𝐻 ⊴ 𝐺
as well.

This is not to mention that important concepts and topics such as characteristic subgroups
and representation theory have been completely omitted. Nor do we really pay much heed
to non-commutative ring theory or module theory.¹ There is so much more even to the
basics of abstract algebra, and I believe it is a field worth further studying.

Thank you for reading this primer. If you have any feedback, please email me at
dchen@dennisc.net.

¹In particular, it is possible to define left and right 𝑅-modules and simultaneously consider them.
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