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Abstract

The Jordan-Holder Theorem states, more or less, that every finite group factors uniquely into
simple groups (i.e. groups with no non-trivial proper normal subgroups). Furthermore, any infinite
group that factors into simple groups must also factor uniquely.

1 Preliminaries
I assume you are familiar with

1. the axioms of group theory,

2. what a normal subgroup is, and that H,K ◁G implies HK ◁G,

3. what a coset is,

4. what a quotient group is,

5. and the First, Second, and Fourth Isomorphism Theorems.

(This list is intentionally constructed in an order that makes it convenient to review these topics.)
As a reminder, here are the Second and Fourth Isomorphism Theorems.

Theorem 1.1 (Second Isomorphism Theorem).

Let G be a group, H ≤ G, and N ≤ NG(H). Then NH/H ∼= N/N ∩H, where all subgroups and
quotients are well-defined.

Theorem 1.2 (Fourth Isomorphism Theorem).

Let G be a group and N ⊴G. Then there is a bijection

f : {H | N ≤ H ≤ G} → {Q | Q ≤ G/N}

defined as f(H) = H/N . Furthermore,

1. H1 ≤ H2 ⇐⇒ H1/N ≤ H2/N

2. H ⊴G ⇐⇒ H/N ⊴G/N .

So f preserves subgroups and normality of subgroups of G.

There are a garden variety of other properties that this bijection satisfies. None of them are
important for our purposes here.

Now onto new content. We first start by defining a simple group and a composition series of a
group.
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Definition 1.3 (Simple Groups).

A group G is simple if it has exactly two normal subgroups: 1 and G.

Another way to think of this definition is that G has no interesting normal subgroups. Note 1 is
not a simple group as it only has one normal subgroup.

Definition 1.4 (Composition Series).

A composition series of G is a finite sequence of subgroups

1 = G0 ◁G1 ◁ · · ·◁Gn = G

where Gi+1/Gi is simple for all 0 ≤ i < n.
We refer to Gi+1/Gi as a composition factor of G.

Here is an example: take Z6 (the cyclic group of order 6). The only two composition series are

1◁ Z2 ◁ Z6

and
1◁ Z3 ◁ Z6.

(What are the quotient groups of successive subgroups in each composition series?)
An important fact is that all finite groups have a composition series. The argument goes like this:

suppose we know that all groups with order less than n have a composition series. Then take a group
G with |G| = n. Either G is simple, in which case we are done (1◁G), or it has an interesting normal
subgroup H.

In the latter case, take a composition series

1 = H0 ◁ · · ·◁Hn = H

and a composition series
H/H = S0/H ◁ · · ·◁ Sm/H = G/H

But note that by the Fourth Isomorphism Theorem,

1 = H0 ◁ · · ·◁H ◁ S1 ◁ · · ·◁ Sm = G

is a composition series of G.
This fact does not directly relate to the statement of the Jordan-Holder Theorem. Yet it illuminates

why we care: composition series are ubiquitous in finite group theory.

2 Jordan-Holder
Informally, Jordan-Holder states that any two composition series have the same length, and that their
composition factors are the same (up to isomorphism and rearrangement).



Theorem 2.1 (Jordan-Holder).

Suppose G has two composition series

1 = G0 ◁ · · ·◁Gn = G

and
1 = H0 ◁ · · ·◁Hm = H.

Then there is a bijection π : {1, . . . , n} → {1, . . . ,m} such that

Gπ(i)/Gπ(i)−1 = Hi/Hi−1

for all 0 ≤ i < n.

The existence of a bijection implies n = m.

2.1 Outline
2.1.1 Strategy

We will utilize strong induction.
Take the smallest k such that Hk is not a subgroup of Gn−1. Here is our strategy: we are going to

consider the series
1 = H0 ∩Gn−1 ⊴ · · ·⊴Hm ∩Gn−1 = Gn−1.

This isn’t a composition series of Gn−1 (in fact, it better not be, because it has a length of m while
we know 1◁ · · ·◁Gn−1 has length n− 1). But we will show that removing Hk ∩Gn−1 makes it one.

2.1.2 The repeat

We make the crucial observation that Hk ∩Gn−1 = Hk−1. This is because Hk−1 and Hk ∩Gn−1 are
both normal subgroups of Hk, so Hk−1(Hk ∩Gn−1)◁Hk too. Thus

Hk−1(Hk ∩Gn−1)

Hk−1
◁

Hk

Hk−1
.

Note Hk

Hk−1
is simple and Hk−1(Hk ∩ Gn−1) is a subgroup of Gn−1, so it cannot be equal to Hk. So

Hk ∩Gn−1 = Hk−1.

2.1.3 Using inductions to establishmost isomorphisms

Now we are going to consider the composition series

(H0 ∩Gn−1)◁ · · ·◁ (Hk−1 ∩Gn−1)◁ (Hk+1 ∩Gn−1)◁ · · ·◁ (Hm ∩Gn−1)

of Gn−1 (note that we have removed Hk ∩Gn−1) which has composition factors

H1 ∩Gn−1

H0 ∩Gn−1
, . . . ,

Hk−1 ∩Gn−1

Hk−2 ∩Gn−1
,
Hk+1 ∩Gn−1

Hk ∩Gn−1
, . . . ,

Hm ∩Gn−1

Hm−1 ∩Gn−1
.

Then we show it is isomorphic to the sequence of composition factors

H1

H0
, . . . ,

Hk−1

Hk−2
,
Hk+1

Hk
, . . . ,

Hm

Hm−1
.

But also, as H0 ∩Gn−1 ◁ · · ·◁Hm ∩Gn−1 is a composition series of Gn−1, its composition factors
must also be isomorphic to the composition factors of

G0 ◁ · · ·◁Gn−1.



2.1.4 The Final Correspondence

So we have set up a correspondence between most of the composition factors of G0 ◁ · · · ◁ Gn and
H0 ◁ · · ·◁Hm. One pair remains: we need to show

G

Gn−1

∼=
Hk

Hk−1
.

This is true as
G

Gn−1
=

HkGn−1

Gn−1

∼=
Hk

Hk ∩Gn−1
=

Hk

Hk−1
.

2.2 Proof
We utilize strong induction on max(n,m).

Take the smallest k such that Hk is not a subgroup of Gn−1.

Lemma 2.2. Hk ∩Gn−1 = Hk−1.

Proof. Note that Hk−1 ◁Hk by definition and Hk ∩Gn−1 ◁Hk as Gn−1 ◁G.1

Obviously Hk−1 ⊆ Hk−1(Hk ∩ Gn−1). Combining this with the well-known fact that H,K ◁ G
implies HK ◁G, we note that

Hk−1 ◁Hk−1(Hk ∩Gn−1)◁Hk.
2

But Hk

Hk−1
is simple, so by the Fourth Isomorphism Theorem, we must either have

Hk−1 = Hk−1(Hk ∩Gn−1) or Hk = Hk−1(Hk ∩Gn−1).

The latter is impossible since Gn−1 ≤ Hk−1(Hk ∩Gn−1) yet Gn−1 ̸≤ Hk. So we have

Hk−1 = Hk−1(Hk ∩Gn−1).

This implies Hk ∩ Gn−1 ≤ Hk−1. But as Hk−1 ≤ Hk and Hk−1 ≤ Gn−1, we also have Hk−1 ≤
Hk ∩Gn−1. This establishes a double inclusion, so Hk ∩Gn−1 = Hk−1, as desired. □

Lemma 2.3. Consider the series
H0Gn−1

Gn−1
, . . . ,

HmGn−1

Gn−1
.

If 0 ≤ i < k then
HiGn−1

Gn−1

∼= 1,

and if k ≤ i ≤ m then
HiGn−1

Gn−1
=

G

Gn−1
.

Proof. Let A and B be subgroups of G, and N be a normal subgroup of G. Recall that A◁B implies
AN
N ◁ BN

N .3 So
H0 ◁ · · ·◁Hm

implies

1 ∼=
H0Gn−1

Gn−1
◁ · · ·◁ HmGn−1

Gn−1
=

G

Gn−1
.

1This relies on the following fact: H ≤ G and N ◁ G implies H ∩ N ◁ H. Proof: suppose n ∈ H ∩ N . Then for all
h ∈ H, hnh−1 ∈ N as N is normal, and hnh−1 ∈ H as n ∈ H. So elements in H ∩N are closed under conjugation by
elements in H, as desired.

2Since Hk−1 is a normal subgroup of Hk, it must be a normal subgroup of any subgroup of Hk containing Hk−1.
Since Hk ∩Gn−1 is such a subgroup, we must have Hk−1 ◁Hk ∩Gn−1.

3Proof: (bN)(aN)(b−1N) = bab−1N , and we know bab−1 ∈ A so bab−1N ∈ AN .



By the simplicity of G
Gn−1

, each HiGn−1

Gn−1
is either isomorphic to 1 or equivalent to Gn

Gn−1
. If Hi ≤ Gn−1

the former is true. If Hi ̸≤ Gn−1 then the former cannot be true, so the latter is true. □

Lemma 2.4. For all i < k − 1,
Hi+1 ∩Gn−1

Hi ∩Gn−1

∼=
Hi+1

Hi
.

Proof. This is obvious as Hi, Hi+1 ≤ Gn−1. □

Lemma 2.5. For all i ≥ k,
Hi+1 ∩Gn−1

Hi ∩Gn−1

∼=
Hi+1

Hi
.

Proof. We claim Hi(Hi+1 ∩ Gn−1) = Hi+1. It is a normal subgroup of Hi+1 as Hi ◁ Hi+1 and
Hi+1 ∩Gn−1 ◁Hi+1. Furthermore Hi is a normal subgroup of it.

By the Second Isomorphism Theorem and Lemma 2.3,

G

Gn−1
=

Hi+1Gn−1

Gn−1

∼=
Hi+1

Hi+1 ∩Gn−1
.

Note this quotient is simple.
Since

Hi+1 ∩Gn−1 ◁Hi(Hi+1 ∩Gn−1)◁Hi+1,
4

simplicity of the quotient yields

Hi(Hi+1 ∩Gn−1) = Hi+1 ∩Gn−1 or Hi(Hi+1 ∩Gn−1) = Hi+1.

Obviously the first case isn’t true.5 So it must be the second.
Now by the Second Isomorphism Theorem,

Hi+1

Hi
=

Hi(Hi+1 ∩Gn−1)

Hi

∼=
Hi+1 ∩Gn−1

Hi ∩ (Hi+1 ∩Gn−1)
=

Hi+1 ∩Gn−1

Hi ∩Gn−1
,

as desired. (We have Hi ≤ NG(Hi+1 ∩Gn−1) as Hi ◁Hi+1 and Hi+1 ∩Gn−1 ≤ Hi+1.) □

Combining our lemmas, we now turn to the series

(H0 ∩Gn−1)◁ · · ·◁ (Hk−1 ∩Gn−1)◁ (Hk+1 ∩Gn−1)◁ · · ·◁ (Hm ∩Gn−1).

Note its composition factors are isomorphic to

H1

H0
, . . . ,

Hk−1

Hk−2
,
Hk+1

Hk
, . . . ,

Hm

Hm−1
.

Because each of these quotients are simple, the series is a composition series.
Now we resolve one potential hiccup: note

Hk+1 ∩Gn−1

Hk−1 ∩Gn−1
=

Hk+1 ∩Gn−1

Hk−1
=

Hk+1 ∩Gn−1

Hk ∩Gn−1
.

So the Hk−1 ∩Gn−1 term is performing double duty.
As

G0 ◁ · · ·◁Gn−1

is a composition series of Gn−1, by the inductive hypothesis, there is some bijection

π0 : {1, . . . , n− 1} → {1, . . . , k − 1, k + 1, . . . ,m− 1}
4Note Hi+1 ∩Gn−1 ◁Hi+1 so Hi+1 ∩Gn−1 ◁Hi(Hi+1 ∩Gn−1).
5Proof: Gn−1 ̸≤ Hi(Hi+1 ∩Gn−1) but Gn−1 ≤ Hi+1 ∩Gn−1.



such that
Gπ0(i)

Gπ0(i)−1

∼=
Hi

Hi−1

for all 1 ≤ i ≤ n− 1.

Lemma 2.6. We have
G

Gn−1

∼=
Hk

Hk−1
.

Proof. Note G = Gn−1Hk by Lemma 2.3 as Gn−1Hk ̸= Gn−1. So

G

Gn−1
=

HkGn−1

Gn−1
,

which is isomorphic to
Hk

Hk ∩Gn−1
=

Hk

Hk−1

by the Second Isomorphism Theorem. (The equivalence is a consequence of Lemma 2.2.) □

Now we extend π0 to a bijection

π : {1, . . . , n} → {1, . . . ,m}

where
Gπ(i)

Gπ(i)−1

∼=
Hi

Hi−1

for all 1 ≤ i ≤ n. Easy:

π(i) =

{
π0(i) 1 ≤ i ≤ n− 1,

k i = n.

3 Does the converse hold?
The factorization of a group G into simple subgroups is unique, much as the factorization of a natural
number n into primes is unique. Furthermore, the prime factors of a natural number uniquely determine
said number.

This gives rise to a natural question: do the composition factors of a group G uniquely determine
the group? In other words, does the converse of Jordan-Holder hold? The answer is no:

1◁ Zp ◁ Zp2

and
1◁ Zp ◁ Zp × Zp.

The composition factors are identical (the only non-trivial check is Zp2/Zp
∼= Zp

∼= (Zp × Zp)/Zp)
yet Zp2 and Zp × Zp are not isomorphic.
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